更新时间:2024-11-14
北京高考数学题技巧:选择题
高考数学选择题一般由题干和备选项两部分组成,具有知识覆盖面广、题量多的特点,要求考生要踏实、牢固、全面地掌握所学基础知识。同时要培养概括、分析、评价等能力,在具备了这些前提条件之后,再辅之以一定的数学答题技巧和方法,才能真正答好选择题。
能否认真审题,是做好选择题的关键。通过审题,可以掌握解题所需的第一手资料——已知条件,弄清题目要求。仔细审题的目的在于充分理解题意,在考试题中往往会有一些陷阱,不仔细推敲就容易出错。随着命题技术的进步,选择题的立体感和动态迁移感愈来愈强,迷惑性越来越大。因其答案的惟一性,一旦审题出现偏误,就会导致全错。认真审题,对选择题尤为重要。要根据选择题的特点,采用立体式的审题方法,明确题意和要求,对于有图的数学题一定要注重数形结合。
在高考数学考试中一定不要小看选择题,因为它也占着一定的分值。选择题和填空题都是小题,小编建议考生,小题要小做,切忌小题大做,可以运用一些高考数学答题技巧,快速化解选择题。
北京高考数学题技巧:非选择题
1、跳步答题
高考数学解题技巧:在高考数学解题过程中总会出现卡壳的现象。这时,可以先承认中间结论,往后推,看能否得到结论。如果不能,说明这个途径不对,立即改变方向;如果能得出预期结论,就回过头来,集中力量攻克这一卡壳处。由于高考数学考试时间有限,来不及攻克卡壳的地方,那就把前面的写下来,再写出要证明的结论一直做到底,也会得到一些分数的。
2、退步解答
高考数学解题技巧:“以退求进”是一个重要的解题策略。如果你不能解决所提出的问题,那么,你可以退到一个你能够解决的问题。为了不产生“以偏概全”的误解,应开门见山写上“本题分几种情况”。这样,还会为寻找正确的、一般性的解法提供有意义的启发。
3、辅助解答
高考数学解题技巧:一道题目的完整解答,既有主要的实质性的步骤,也有次要的辅助性的步骤。实质性的步骤未找到之前,找辅助性的步骤是明智之举,既必不可少而又不困难。如:准确作图,把题目中的条件翻译成数学表达式,设应用题的未知数等。
书写也是辅助解答。“书写要工整、卷面能得分”是说第一印象好会在阅卷老师的心理上产生光环效应:书写认真→学习认真→成绩优良→给分偏高。
北京高考数学题技巧:难度分析
第一,文科和去年相比难度下降。
北京市高考实行新课标以来,一直有一道题目叫做“第20题”,第20题压轴题都特别难,往往是新定义的题目,可能跟数列有关系,可能跟集合有关系,部分时候跟函数也有关系,这道题特别难,主要是第一不认识,第二没时间,但在北京市高考文科数学的试题中,20题消失了,这是所有文科同学都感到很开心的事情,文科多出了一道大题,是普通的数列计算题,出在了第15题,少了一道,20题没有了,取而代之的是20题是导数的题目,很简单。
第二,理科跟往年比难度略有增加。
题目往年是有一些所谓的表面上的难度增加,举一个例子,立体几何比较诡异,正常情况下,正常年份,立体几何应该是三问,有一问垂直证明,有一问角度计算和空间探索,北京市的理科数学,相当一部分同学,包括平时还不错的同学,处理的都不是特别好,所以这是北京市理科数学难度增大的一个具体的表现。
1.选择题——“不择手段”
题型特点:
(1)概念性强:数学中的每个术语、符号,乃至习惯用语,往往都有明确具体的含义,这个特点反映到选择题中,表现出来的就是试题的概念性强,试题的陈述和信息的传递,都是以数学的学科规定与习惯为依据,决不标新立异。
(2)量化突出:数量关系的研究是数学的一个重要的组成部分,也是数学考试中一项主要的内容,在高考的数学选择题中,定量型的试题所占的比重很大,而且许多从形式上看为计算定量型选择题,其实不是简单或机械的计算问题,其中往往蕴含了对概念、原理、性质和法则的考查,把这种考查与定量计算紧密地结合在一起,形成了量化突出的试题特点。
(3)充满思辨性:这个特点源于数学的高度抽象性、系统性和逻辑性。作为数学选择题,尤其是用于选择性考试的高考数学试题,只凭简单计算或直观感知便能正确作答的试题不多,几乎可以说并不存在,绝大多数的选择题,为了正确作答,或多或少总是要求考生具备一定的观察、分析和逻辑推断能力。思辨性的要求充满题目的字里行间。
(4)形数兼备:数学的研究对象不仅是数,还有图形,而且对数和图形的讨论与研究,不是孤立开来分割进行,而是有分有合,将它们辩证统一起来。这个特色在高中数学中已经得到充分的显露。因此,在高考的数学选择题中,便反映出形数兼备这一特点,其表现是几何选择题中常常隐藏着代数问题,而代数选择题中往往又寓有几何图形的问题。因此,数形结合与形数分离的解题方法是高考数学选择题的一种重要且有效的思想方法与解题方法。
(5)解法多样化:以其他学科比较,“一题多解”的现象在数学中表现突出,尤其是数学选择题由于它有备选项,给试题的解答提供了丰富的有用信息,有相当大的提示性,为解题活动展现了广阔的天地,大大地增加了解答的途径和方法。常常潜藏着极其巧妙的解法,有利于对考生思维深度的考查。
解题策略:
(1)注意审题。把题目多读几遍,弄清这个题目求什么,已知什么,求、知之间有什么关系,把题目搞清楚了再动手答题。
(2)答题顺序不一定按题号进行。可先从自己熟悉的题目答起,从有把握的题目入手,使自己尽快进入到解题状态,产生解题的激情和欲望,再解答陌生或不太熟悉的题目。若有时间,再去拼那些把握不大或无从下手的题。这样也许能超水平发挥。
(3)数学选择题大约有70%的题目都是直接法,要注意对符号、概念、公式、定理及性质等的理解和使用,例如函数的性质、数列的性质就是常见题目。
(4)挖掘隐含条件,注意易错易混点,例如集合中的空集、函数的定义域、应用性问题的限制条件等。
(5)方法多样,不择手段。高考试题凸现能力,小题要小做,注意巧解,善于使用数形结合、特值(含特殊值、特殊位置、特殊图形)、排除、验证、转化、分析、估算、极限等方法,一旦思路清晰,就迅速作答。不要在一两个小题上纠缠,杜绝小题大做,如果确实没有思路,也要坚定信心,“题可以不会,但是要做对”,即使是“蒙”也有25%的胜率。
(6)控制时间。一般不要超过40分钟,最好是25分钟左右完成选择题,争取又快又准,为后面的解答题留下充裕的时间,防止“超时失分”。
2.填空题——“直扑结果”
题型特点:
填空题和选择题同属客观性试题,它们有许多共同特点:其形态短小精悍,考查目标集中,答案简短、明确、具体,不必填写解答过程,评分客观、公正、准确等等,不过填空题和选择题也有质的区别。首先,表现为填空题没有备选项,因此,解答时既有不受诱误的干扰之好处,又有缺乏提示的帮助之不足。对考生独立思考和求解,在能力要求上会高一些。长期以来,填空题的答对率一直低于选择题的答对率,也许这就是一个重要的原因。其次,填空题的解构,往往是在一个正确的命题或断言中,抽去其中的一些内容(即可以使条件,也可以是结论),留下空位,让考生独立填上,考查方法比较灵活,在对题目的阅读理解上,较之选择题有时会显得较为费劲。当然并非常常如此,这将取决于命题者对试题的设计意图。
填空题的考点少,目标集中。否则,试题的区分度差,其考试的信度和效度都难以得到保证。这是因为:填空题要是考点多,解答过程长,影响结论的因素多,那么对于答错的考生便难以知道其出错的真正原因,有的可能是一窍不通,入手就错了;有的可能只是到了最后一步才出错,但他们在答卷上表现出来的情况一样,得相同的成绩,尽管他们的水平存在很大的差异。
解题策略:
由于填空题和选择题有相似之处,所以有些解题策略是可以共用的,在此不再多讲,只针对不同的特征给几条建议:
一是填空题绝大多数是计算型(尤其是推理计算型)和概念(或性质)判断性的试题,应答时必须按规则进行切实的计算或合乎逻辑的推演和判断;
二是作答的结果必须是数值准确,形式规范,例如集合形式的表示、函数表达式的完整等,结果稍有毛病便是零分;
三是《考试说明》中对解答填空题提出的要求是“正确、合理、迅速”,因此,解答的基本策略是:快——运算要快,力戒小题大做;稳——变形要稳,防止操之过急;全——答案要全,避免对而不全;活——解题要活,不要生搬硬套;细——审题要细,不能粗心大意。
3.解答题——“步步为营”
题型特点:
解答题与填空题比较,同居提供型的试题,但也有本质的区别,首先,解答题应答时,考生不仅要提供出最后的结论,还得写出或说出解答过程的主要步骤,提供合理、合法的说明,填空题则无此要求,只要填写结果,省略过程,而且所填结果应力求简练、概括的准确;其次,试题内涵解答题比起填空题要丰富得多,解答题的考点相对较多,综合性强,难度较高,解答题成绩的评定不仅看最后的结论,还要看其推演和论证过程,分情况判定分数,用以反映其差别,因而解答题命题的自由度较之填空题大得多。
评分办法:
数学高考阅卷评分实行懂多少知识给多少分的评分办法,叫做“分段评分”。而考生“分段得分”的基本策略是:会做的题目力求不失分,部分理解的题目力争多得分。会做的题目若不注意准确表达和规范书写,常常会被“分段扣分”,有阅卷经验的老师告诉我们,解答立体几何题时,用向量方法处理的往往扣分少。
解答题阅卷的评分原则一般是:第一问,错或未做,而第二问对,则第二问得分全给;前面错引起后面方法用对但结果出错,则后面给一半分。
解题策略:
(1)常见失分因素:
①对题意缺乏正确的理解,应做到慢审题快做题;
②公式记忆不牢,考前一定要熟悉公式、定理、性质等;
③思维不严谨,不要忽视易错点;
④解题步骤不规范,一定要按课本要求,否则会因不规范答题失分,避免“对而不全”如解概率题,要给出适当的文字说明,不能只列几个式子或单纯的结论,表达不规范、字迹不工整等非智力因素会影响阅卷老师的“感情分”;
⑤计算能力差失分多,会做的一定不能放过,不能一味求快,例如平面解析中的圆锥曲线问题就要求较强的运算能力;
⑥轻易放弃试题,难题不会做,可分解成小问题,分步解决,如最起码能将文字语言翻译成符号语言、设应用题未知数、设轨迹的动点坐标等,都能拿分。也许随着这些小步骤的罗列,还能悟出解题的灵感。
(2)何为“分段得分”:
对于同一道题目,有的人理解的深,有的人理解的浅;有的人解决的多,有的人解决的少。为了区分这种情况,高考的阅卷评分办法是懂多少知识就给多少分。这种方法我们叫它“分段评分”,或者“踩点给分”——踩上知识点就得分,踩得多就多得分。与之对应的“分段得分”的基本精神是,会做的题目力求不失分,部分理解的题目力争多得分。
对于会做的题目,要解决“会而不对,对而不全”这个老大难问题。有的考生拿到题目,明明会做,但最终答案却是错的———会而不对。有的考生答案虽然对,但中间有逻辑缺陷或概念错误,或缺少关键步骤———对而不全。因此,会做的题目要特别注意表达的准确、考虑的周密、书写的规范、语言的科学,防止被“分段扣分”。经验表明,对于考生会做的题目,阅卷老师则更注意找其中的合理成分,分段给点分,所以“做不出来的题目得一二分易,做得出来的题目得满分难”。
对绝大多数考生来说,更为重要的是如何从拿不下来的题目中分段得点分。我们说,有什么样的解题策略,就有什么样的得分策略。把你解题的真实过程原原本本写出来,就是“分段得分”的全部秘密。
①缺步解答:如果遇到一个很困难的问题,确实啃不动,一个聪明的解题策略是,将它们分解为一系列的步骤,或者是一个个小问题,先解决问题的一部分,能解决多少就解决多少,能演算几步就写几步,尚未成功不等于失败。特别是那些解题层次明显的题目,或者是已经程序化了的方法,每一步得分点的演算都可以得分,最后结论虽然未得出,但分数却已过半,这叫“大题拿小分”。
②跳步答题:解题过程卡在某一过渡环节上是常见的。这时,我们可以先承认中间结论,往后推,看能否得到结论。如果不能,说明这个途径不对,立即改变方向;如果能得出预期结论,就回过头来,集中力量攻克这一“卡壳处”。由于考试时间的限制,“卡壳处”的攻克如果来不及了,就可以把前面的写下来,再写出“证实某步之后,继续有……”一直做到底。也许,后来中间步骤又想出来,这时不要乱七八糟插上去,可补在后面。若题目有两问,第一问想不出来,可把第一问作“已知”,先做第二问,这也是跳步解答。
③退步解答:“以退求进”是一个重要的解题策略。如果你不能解决所提出的问题,那么,你可以从一般退到特殊,从抽象退到具体,从复杂退到简单,从整体退到部分,从较强的结论退到较弱的结论。总之,退到一个你能够解决的问题。为了不产生“以偏概全”的误解,应开门见山写上“本题分几种情况”。这样,还会为寻找正确的、一般性的解法提供有意义的启发。
④辅助解答:一道题目的完整解答,既有主要的实质性的步骤,也有次要的辅助性的步骤。实质性的步骤未找到之前,找辅助性的步骤是明智之举。如:准确作图,把题目中的条件翻译成数学表达式,设应用题的未知数等。答卷中要做到稳扎稳打,字字有据,步步准确,尽量一次成功,提高成功率。试题做完后要认真做好解后检查,看是否有空题,答卷是否准确,所写字母与题中图形上的是否一致,格式是否规范,尤其是要审查字母、符号是否抄错,在确信万无一失后方可交卷。
(3)能力不同,要求有变:
由于考生的层次不同,面对同一张数学卷,要尽可能发挥自己的水平,考试策略也有所不同。针对基础较差、以二类本科为最高目标的考生而言要“以稳取胜”——这类考生除了知识方面的缺陷外,“会而不对,对而不全”是这类考生的致命伤。丢分的主要原因在于审题失误和计算失误。考试时要克服急躁心态,如果发现做不下去,就尽早放弃,把时间用于检查已做的题,或回头再做前面没做的题。记住,只要把你会做的题都做对,你就是最成功的人!针对二本及部分一本的同学而言要“以准取胜”——他们基础比较扎实,但也会犯低级错误,所以,考试时要做到准确无误(指会做的题目),除了最后两题的第三问不一定能做出,其他题目大都在“火力范围”内。但前面可能遇到“拦路虎”,要敢于放弃,把会做的题做得准确无误,再回来“打虎”。针对第一志愿为名牌大学的考试而言要“以新取胜”——这些考生的主攻方向是能力型试题,在快速、正确做好常规试题的前提下,集中精力做好能力题。这些试题往往思考强度大,运算要求高,解题需要新的思想和方法,要灵活把握,见机行事。如果遇到不顺手的试题,也不必恐慌,可能是试题较难,大家都一样,此时,使会做的题不丢分就是上策。
高考数学答题套路 数学题秒杀技巧
对于高中数学的答题模板,相信很多同学都想有一个属于自己的答题套路,下面有途网小编为大家总结高中数学的答题模板。
解三角形问题
(1)解题路线图
①a化简变形;b用余弦定理转化为边的关系;c变形证明。②a用余弦定理表示角;b用基本不等式求范围;c确定角的取值范围。
(2)构建答题模板
①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。②定工具:即根据条件和所求,合理选择转化的工具,实施边角之间的互化。③求结果。④再反思:在实施边角互化的时候应注意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。
利用空间向量求角问题
(1)解题路线图
①建立坐标系,并用坐标来表示向量。②空间向量的坐标运算。③用向量工具求空间的角和距离。
(2)构建答题模板
①找垂直:找出(或作出)具有公共交点的三条两两垂直的直线。②写坐标:建立空间直角坐标系,写出特征点坐标。③求向量:求直线的方向向量或平面的法向量。④求夹角:计算向量的夹角。⑤得结论:得到所求两个平面所成的角或直线和平面所成的角。
比较排除法
给一个东西挑毛病是远远简单于证明一个东西正确的。选择题的解题本质就是“选择”,舍弃不符合题目要求的错误答案,找到符合题意的正确结论。可通过筛除一些较易判定、不合题意的结论,缩小选择的范围,再从其余的结论中求得正确的答案。
特殊值(特值法、极限法)
在不影响结论的前提下,将题设条件特殊化,从而得出正确结论。有些选择题,用常规方法直接求解比较困难,若根据答案中所提供的信息,选择某些特殊情况进行分析,或选择某些特殊值进行计算,或将字母参数换成具体数值代入,把一般形式变为特殊形式,再进行判断往往十分简单。对于有范围限制的选择题,或包括的情形比较多的选择题,求解时,可运用极限思想,让变量无限靠近某个值或取极端情形,求出极限,可得答案的求解方法。
高考数学题的蒙题技巧 数学居然可以这样蒙
很多人对于数学这门学科都是很恐惧的,尤其是高中数学,很多学生表示根本看不懂数学题。那么对于要高考的学生来说,如何在数学科目上去取得更好的分数呢?下面小编为各位介绍一些高考数学题的蒙题技巧。
高考数学题的蒙题技巧一
高考时带一个量角器进考场,因为高考解析几何题一定会有求度数的小题,这时你就可以用量角器测一下,就可以写出最后结论,这是最简单也是最牛的高考数学蒙题技巧。
高考数学必考题型之空间几何,证明过程中有一步实在想不出把没用过的条件直接写上然后得出想不出的那个结论即可。如果第一题真心不会做直接写结论成立则第二题可以直接用!用常规法的考生建议先随便建立个空间坐标系,如果做错了,至少还可以得几分,这是一个投机取巧的技巧,但好比过一分不得!
高考数学题的蒙题技巧二
逻辑分析,有些题不用算
举例说明:此处省略一大堆文字介绍 ,K的值是?
A. -33 B. 33 C. 15 D.71
九成概率选B,想知道为什么?
以下是3秒中脑海中闪过的:有33正负两种,那出题者肯定考察这方面的运算错误,所以CD选项就是充数的,若是-33是正确答案,那至少要同时正负出现错误、数值出错才可能选D。一般情况下,出题人会给每个错误一个“错下去的理由”,如果多于一个,肯定不是。所以选B。
高考数学题的蒙题技巧三
数学第一题一般不会是A;最后一题不会是A;选择题的答案分布均匀;填空题不会就填0或1;答案有根号的,不选;答案有1的,选;三个答案是正的时候,在正的中选;有一个是正X,一个是负X的时候,在这两个中选;题目看起来数字简单,那么答案选复杂的,反之亦然;上一题选什么,这一题选什么,连续有三个相同的则不;以上都不实用的时候选B。
以上就是小编为各位介绍的三种高考数学的蒙题技巧,其实有包括填空题、选择题。学生们不要一味的靠着蒙,蒙题是有很大一部分的运气成分在的。最主要的还是好好学习数学,多做历年的高考数学题,题海战术也是不错的选择。
高考数学题难吗?答数学题时有什么偷分技巧
的高考已经结束了,很多高三考生已经开始准备备战高考了。很多人都比较关心高考数学题难吗?下面,有途网小编就为大大家来解答一下,高考数学题难吗?答数学题时有什么偷分技巧?
高考数学题难吗?
相较于上午考完语文的轻松,在下午的数学科目考试中,有不少考生出考场时神色凝重,有的一出考场就哭了起来。值得注意的是,去年和今年,概率题都成为不少考生在数学科目的"拦路虎"。
据多个考生反映,文科数学的大题都是勉强做完,概率题较吃力。而理科考生表示,高考数学题难,数学试题统计、三角函数及选做题都很难,几何题比较简单。“我觉得理科数学比去年难,后面的题没做完。”何同学感叹道,他希望随后能在综合科目的考试上努力,将分数补回来。
答数学题时有什么偷分技巧?
虽然高考数学题难,但是也不影响的考生,只要考生掌握到了数学答题的技巧就可以,现在来看看答数学题时有什么偷分技巧?
圆锥曲线中最后题往往联立起来很复杂导致k算不出,这时你可以取特殊值法强行算出k过程就是先联立,后算代尔塔,用下伟达定理,列出题目要求解的表达式,就ok了。www.ccutu.com
选择题中如果有算锥体体积和表面积的话,直接看选项面积找到差2倍的小的就是答案,体积找到差3倍的小的就是答案,屡试不爽!
三角函数第二题,如求a(cosB+cosC)/(b+c)coA之类的先边化角然后把第一题算的比如角A等于60度直接假设B和C都等于60°带入求解。省时省力!
以上就是有途网小编为大家整理的0高考数学题难吗?答数学题时有什么偷分技巧,希望同学们看完了能对自己有帮助,但是小编还是要提醒大家一下,答题不能全靠偷分技巧,真本事才是得高分的最基本啊!
高考数学偷分技巧不看后悔 怎样答好数学题
在高考中数学属于大部分考生的弱点,想要在高考中数学取得好成绩,除了平时的基础外,还有一部分是考场的发挥,下面小编为大家提供高考数学偷分技巧,希望对大家有所帮助。
数学选择题 “偷分”技巧
前几道是送分的,最后两道它的目的就是不想让你得分,最后两道也就是说非常的难,俩字“放弃”,别为这俩题耽误时间,有时候自己必须承认自己不是天才, 直接选“C”
数学考场中“偷分”技巧
1.带个量角器进考场,遇见解析几何马上可以知道是多少度,小题求角基本马上解了,要是求别的也可以代换,关系。大题角度是个很重要的结论,然后你可以乱吹些上去,最后写出结论。偷分get!
2.圆锥曲线中最后题往往联立起来很复杂导致k算不出,这时你可以取特殊值法强行算出k过程就是先联立,后算代尔塔,用下伟达定理,列出题目要求解的表达式,偷分get!
3.圆锥曲线中最后题往往联立起来很复杂导致k算不出,这时你可以取特殊值法强行算出k过程就是先联立,后算代尔塔,用下伟达定理,列出题目要求解的表达式,偷分get!
4.空间几何证明过程中有一步实在想不出把没用过的条件直接写上然后得出想不出的那个结论即可。如果第一题真心不会做直接写结论成立则第二题可以直接用!用常规法的同学建议先随便建立个空间坐标系,做错了还有2分可以得!
高考数学数量原则
理想状态:15道题,每题5个选项,A、B、C、D、E平均每个选项共出现3次。答案排列:3、3、3、3、3
实际状态:每个选项在2——4的范围内。
选项排列:3、3、3、2、4(此种状态略多呈现)或3、2、4、2、4。即某一个选项为2个,某一个选项为4个。