µ±Ç°Î»Ö㺼ҽÌÍøÊ×Ò³ > ¼ÒÍ¥½ÌÓý > ÉîÈëÀí½âÃݺ¯Êý£º´Ó»ù´¡µ½Ë¼Î¬Ô¾Ç¨
ÉîÈëÀí½âÃݺ¯Êý£º´Ó»ù´¡µ½Ë¼Î¬Ô¾Ç¨
¡¾À´Ô´£ºÒ×½ÌÍø ¸üÐÂʱ¼ä£º2025-09-05¡¿
ÄãÓÐûÓÐÊÔ¹ýÕâÑùÒ»Öָоõ£¿Ã÷Ã÷¿Î±¾ÉϵÄÿһ¸ö×Ö¶¼ÈÏʶ£¬ÀÏʦ½²µÄʱºòÒ²¾õµÃ¡°Å¶£¬ÔÀ´Èç´Ë¡±£¬¿ÉÒ»µ½×Ô¼º×öÌ⣬ÓÈÆäÊÇÓöµ½ÉÔ΢±ä¸öÐÎʽµÄÌâÄ¿£¬ÄÔ×Ó¾ÍͻȻ¡°¿¨×¡¡±ÁË£¿Èç¹ûÄãÕýÔÚѧϰ¸ßÒ»Êýѧ£¬ÓÈÆäÊǸսӴ¥µ½Ãݺ¯ÊýÕâÒ»¿éÄÚÈÝ£¬ÕâÖָоõ¿ÉÄܸñÍâÊìϤ¡£
±ðµ£ÐÄ£¬Õâ²¢²»ÊÇÄã²»¹»´ÏÃ÷£¬¶øÊÇÒòΪÊýѧÖеĺܶà¸ÅÄ±íÃæÉÏ¿´ÊÇ¡°ÖªÊ¶¡±£¬Êµ¼ÊÉϸüÏñÊÇÒ»ÖÖ¡°Ë¼Î¬·½Ê½¡±¡£Ãݺ¯Êý£¬¾ÍÊÇÕâÑùÒ»¸öµäÐ͵ÄÀý×Ó¡£Ëü²»ÏñÒ»´Îº¯ÊýÄÇÑùÖ±¹Û£¬Ò²²»Ïñ¶þ´Îº¯ÊýÄÇÑù³£¼û£¬µ«ËüÈ´ÏñÒ»°ÑÒþ²ØµÄÔ¿³×£¬ÇÄÇÄ´ò¿ªÁËÀí½â¸ü¸´ÔÓº¯ÊýÊÀ½çµÄ´óÃÅ¡£
½ñÌ죬ÎÒÃǾÍÀ´Ò»Æð¡°ÂýÏÂÀ´¡±£¬²»¼±×ű³¹«Ê½¡¢Ë¢Ì⣬¶øÊÇÕæÕý×ß½øÃݺ¯ÊýµÄÄÚÐÄ£¬¿´¿´Ëüµ½µ×ÊÇʲô£¬ÎªÊ²Ã´Ëü³¤³ÉÕâ¸öÑù×Ó£¬ÒÔ¼°ÎÒÃÇÔõÑù²ÅÄÜÕæÕý¡°ÕÆÎÕ¡±Ëü¡£
Ãݺ¯Êýµ½µ×ÊÇʲô£¿
ÎÒÃÇÏÈÀ´¿´Ò»¸ö×î¼òµ¥µÄ¶¨Ò壺ÐÎÈç \[ y = x^a \] µÄº¯Êý£¬ÆäÖÐ \[ a \] ÊÇÒ»¸ö³£Êý£¬½Ð×öÃݺ¯Êý¡£
Õâ¾ä»°¿´ÆðÀ´ºÜ¼òµ¥£¬µ«Æäʵ²Ø×ÅÒ»¸ö·Ç³£ÖØÒªµÄ¹Û²ì½Ç¶È£ºÔÚÃݺ¯ÊýÖУ¬µ×Êý \[ x \] ÊDZäÁ¿£¬¶øÖ¸Êý \[ a \] Êǹ̶¨µÄ¡£ÕâÒ»µãºÍÖ¸Êýº¯Êý£¨±ÈÈç \[ y = a^x \]£©ÕýºÃÏà·´¡£ºÜ¶àÈËÒ»¿ªÊ¼ÈÝÒ×»ìÏýÕâÁ½Õߣ¬¹Ø¼ü¾ÍÔÚÓÚËÊDZäÁ¿£¬ËÊdz£Êý¡£
¾Ù¸öÀý×Ó£º
- \[ y = x^2 \] ÊÇÃݺ¯Êý£¬ÒòΪµ×Êý \[ x \] Ôڱ䣬ָÊý 2 Êǹ̶¨µÄ¡£
- \[ y = 2^x \] ÊÇÖ¸Êýº¯Êý£¬ÒòΪָÊý \[ x \] Ôڱ䣬µ×Êý 2 Êǹ̶¨µÄ¡£
Õâ¸öÇø±ð¿´ËÆÎ¢Ð¡£¬ÊµÔò¾ö¶¨ÁËËüÃǵÄÐÐΪģʽÍêÈ«²»Í¬¡£Ãݺ¯ÊýµÄ¡°ÐÔ¸ñ¡±ºÜ´ó³Ì¶ÈÉÏÓÉÄǸö¹Ì¶¨µÄÖ¸Êý \[ a \] ¾ö¶¨¡£
ΪʲôÃݺ¯ÊýµÄ¶¨ÒåÓòÕâô¡°¸´ÔÓ¡±£¿
Äã¿ÉÄÜÒѾעÒâµ½£¬¹ØÓÚÃݺ¯ÊýµÄ¶¨ÒåÓò£¬½Ì²Ä»ò×ÊÁÏÀï×ÜÊÇдµÃÌØ±ðϸÖ£¬ÉõÖÁÓе㡰?ªà¡±¡£±ÈÈ磺
- µ± \[ a \] ÊÇÕýÕûÊýʱ£¬±ÈÈç \[ y = x^3 \]£¬¶¨ÒåÓòÊÇÈ«ÌåʵÊý¡£
- µ± \[ a \] ÊǸºÕûÊýʱ£¬±ÈÈç \[ y = x^{-2} = \frac{1}{x^2} \]£¬¶¨ÒåÓòÊÇ \[ x \neq 0 \]¡£
- µ± \[ a \] ÊÇ·ÖÊýʱ£¬±ÈÈç \[ y = x^{1/2} = \sqrt{x} \]£¬¶¨ÒåÓòÊÇ \[ x \geq 0 \]¡£
- µ± \[ a \] ÊÇ \[ -1/2 \] ʱ£¬\[ y = x^{-1/2} = \frac{1}{\sqrt{x}} \]£¬¶¨ÒåÓòÊÇ \[ x > 0 \]¡£
Ϊʲô»áÕâÑù£¿Æäʵ£¬ÕâЩ¡°ÏÞÖÆ¡±²¢²»ÊÇÊýѧ¼Ò¹ÊÒâÉèµÄÕϰ£¬¶øÊÇÔ´ÓÚÁ½¸ö×î»ù±¾µÄÊýѧ¹æÔò£º
1. ·Öĸ²»ÄÜΪÁã¡£
2. ż´Î·½¸ùϵÄÊý²»ÄÜΪ¸ºÊý¡£
ÎÒÃÇÀ´Ò»¸ö¸ö¿´¡£
Çé¿öÒ»£ºÖ¸ÊýÊǸºÊý
±ÈÈç \[ y = x^{-3} \]¡£¸ù¾Ý¸ºÖ¸ÊýµÄ¶¨Ò壬ÕâµÈÓÚ \[ y = \frac{1}{x^3} \]¡£Õâʱºò£¬·ÖĸÊÇ \[ x^3 \]£¬¶ø·Öĸ²»ÄÜΪÁ㣬ËùÒÔ \[ x \neq 0 \]¡£Õâ¾ÍÊÇΪʲôֻҪָÊýÊǸºÊý£¬¶¨ÒåÓò¾ÍÒ»¶¨Åųý 0¡£
Çé¿ö¶þ£ºÖ¸ÊýÊÇ·ÖÊý
±ÈÈç \[ y = x^{2/3} \]¡£Õâ¿ÉÒÔÀí½âΪ \[ y = \sqrt[3]{x^2} \]¡£ÕâÀÎÒÃÇÏÈÆ½·½ÔÙ¿ªÁ¢·½¡£
Á¢·½¸ù¶Ô¸ºÊýÊÇÔÊÐíµÄ£¬ËùÒÔ¼´Ê¹ \[ x \] ÊǸºÊý£¬±ÈÈç \[ x = -8 \]£¬\[ (-8)^2 = 64 \]£¬\[ \sqrt[3]{64} = 4 \]£¬Ã»ÎÊÌâ¡£ËùÒÔ \[ y = x^{2/3} \] µÄ¶¨ÒåÓòÊÇÈ«ÌåʵÊý¡£
µ«Èç¹ûÖ¸ÊýÊÇ \[ 1/2 \]£¬±ÈÈç \[ y = x^{1/2} = \sqrt{x} \]£¬Æ½·½¸ùÒªÇóÀïÃæµÄÊý·Ç¸º£¬ËùÒÔ \[ x \geq 0 \]¡£
ÔÙ±ÈÈç \[ y = x^{-3/4} \]¡£ÕâµÈÓÚ \[ y = \frac{1}{\sqrt[4]{x^3}} \]¡£µÚËĸùºÅÊÇż´Î¸ùºÅ£¬ËùÒÔ \[ x^3 \] ±ØÐë´óÓÚµÈÓÚ 0¡£
¶ø \[ x^3 \geq 0 \] µ±ÇÒ½öµ± \[ x \geq 0 \]£¬Í¬Ê±·Öĸ²»ÄÜΪÁ㣬ËùÒÔ \[ x > 0 \]¡£
Äã¿´£¬ËùÓеġ°ÏÞÖÆ¡±Æäʵ¶¼¿ÉÒÔ×·Ëݵ½ÄÇÁ½Ìõ»ù±¾¹æÔò¡£Àí½âÁËÕâÒ»µã£¬Äã¾Í²»ÔÙÐèÒªËÀ¼ÇÓ²±³Ã¿ÖÖÇé¿öµÄ¶¨ÒåÓò£¬¶øÊÇ¿ÉÒÔ×Ô¼ºÍƵ¼³öÀ´¡£
Ãݺ¯ÊýµÄͼÏñ£ºËüÃÇÔÚ¡°Ëµ»°¡±
ÊýѧÖУ¬Í¼ÏñÊǺ¯ÊýµÄ¡°ÓïÑÔ¡±¡£Ãݺ¯ÊýµÄͼÏñËäÈ»ÐÎʽ¶àÑù£¬µ«ËüÃǶ¼ÔÚ´«µÝһЩ¹²Í¬µÄÐÅÏ¢¡£ÎÒÃÇÖØµã¿´¿´ÔÚµÚÒ»ÏóÏÞ£¨Ò²¾ÍÊÇ \[ x > 0 \]£©ÕâЩͼÏñµÄ¹æÂÉ¡£
ËùÓÐÃݺ¯Êý¶¼¹ý (1, 1)
ÎÞÂÛ \[ a \] ÊÇʲô£¬Ö»Òª \[ x = 1 \]£¬ÄÇô \[ y = 1^a = 1 \]¡£ËùÒÔËùÓÐÃݺ¯ÊýµÄͼÏñ¶¼»á¾¹ýµã \[ (1, 1) \]¡£ÕâÊÇÒ»¸ö·Ç³£Îȶ¨¡¢¿É¿¿µÄ¡°Ãªµã¡±£¬×öÌâʱ¿ÉÒÔÓÃÀ´¿ìËÙÑéÖ¤¡£
Ö¸Êý \[ a \] ¾ö¶¨Á˺¯ÊýµÄ¡°ÐÔ¸ñ¡±
- µ± \[ a > 0 \] ʱ£¬º¯ÊýÊǵÝÔöµÄ¡£Ò²¾ÍÊÇ˵£¬\[ x \] Ô½´ó£¬\[ y \] Ò²Ô½´ó¡£
- µ± \[ a < 0 \] ʱ£¬º¯ÊýÊǵݼõµÄ¡£\[ x \] Ô½´ó£¬\[ y \] ·´¶øÔ½Ð¡¡£
Õâ¸öºÜºÃÀí½â¡£±ÈÈç \[ y = x^2 \]£¬\[ x \] ´Ó 1 Ôö¼Óµ½ 2£¬\[ y \] ´Ó 1 ±ä³É 4£¬Ã÷ÏÔÔö´ó¡£¶ø \[ y = x^{-1} = \frac{1}{x} \]£¬\[ x \] ´Ó 1 µ½ 2£¬\[ y \] ´Ó 1 ±ä³É 0.5£¬Ã÷ÏÔ¼õС¡£
ͼÏñµÄ¡°ÍäÇú·½Ïò¡±ÓÉ \[ a \] ºÍ 1 µÄ¹ØÏµ¾ö¶¨
- µ± \[ a > 1 \] ʱ£¬Í¼ÏñÏòϰ¼£¨ÏñÒ»¿Ú¹ø£©¡£
- µ± \[ 0 < a < 1 \] ʱ£¬Í¼ÏñÏòÉÏ͹£¨ÏñÒ»×ù¹°ÇÅ£©¡£
- µ± \[ a < 0 \] ʱ£¬Í¼ÏñÒ²ÊÇÏòϰ¼£¬µ«ÕûÌåÊǵݼõµÄ¡£
Äã¿ÉÒÔÕâÑùÏëÏó£º\[ a \] Ô½´ó£¬º¯Êý¡°Ôö³¤µÃÔ½ÃÍ¡±£¬ËùÒÔÇúÏ߻ᡰÍ䡱µÃ¸üÀ÷º¦£¬Ïòϰ¼¡£¶ø \[ a \] ºÜСµ«ÎªÕýʱ£¬º¯ÊýÔö³¤»ºÂý£¬ÏñÊÇ¡°ÀÁÑóÑó¡±µØÅÀÉÏÈ¥£¬ÐγÉÉÏ͹µÄÐÎ×´¡£
Ò»¸öÓÐȤµÄ¶Ô±È£º\[ y = x^2 \] ºÍ \[ y = x^{1/2} \]
\[ y = x^2 \] ºÍ \[ y = \sqrt{x} \] ¿´ÆðÀ´ºÁ²»Ïà¸É£¬µ«ËüÃÇÆäʵÊÇ¡°·´×ÅÀ´µÄ¡±¡£ÊÂʵÉÏ£¬ËüÃÇ»¥Îª·´º¯Êý£¨ÔÚ \[ x \geq 0 \] µÄ·¶Î§ÄÚ£©¡£
ÕâÒâζ×Å£¬Èç¹ûÄã°Ñ \[ y = x^2 \] µÄͼÏñÑØ×ÅÖ±Ïß \[ y = x \] ¶ÔÕÛ£¬¾Í»áµÃµ½ \[ y = \sqrt{x} \] µÄͼÏñ¡£ÕâÖÖ¶Ô³ÆÐÔ²»ÊÇÇɺϣ¬¶øÊÇÃݺ¯Êý¼Ò×åÄÚ²¿µÄÒ»ÖÖÉî¿ÌÁªÏµ¡£
Ϊʲô 0 ÓÐʱºòÔÚÖµÓòÀÓÐʱºò²»ÔÚ£¿
ÖµÓòÊǺ¯ÊýËùÓпÉÄÜÊä³öµÄ \[ y \] ÖµµÄ¼¯ºÏ¡£¶ÔÓÚÃݺ¯Êý \[ y = x^a \]£¬0 Äܲ»ÄܳöÏÖÔÚÖµÓòÀȡ¾öÓÚ \[ a \] µÄÕý¸º¡£
- Èç¹û \[ a > 0 \]£¬µ± \[ x \] Ç÷½üÓÚ 0 ʱ£¬\[ y = x^a \] Ò²Ç÷½üÓÚ 0¡£
¶øÇÒµ± \[ x = 0 \] ʱ£¬Ö»Òª \[ a > 0 \]£¬\[ y = 0^a = 0 \]£¨×¢Ò⣺ÕâÀï \[ a \] ²»ÄÜÊÇ 0£¬µ« \[ a > 0 \] ûÎÊÌ⣩¡£ËùÒÔ 0 ÔÚÖµÓòÀï¡£
- Èç¹û \[ a < 0 \]£¬±ÈÈç \[ y = x^{-2} \]£¬µ± \[ x \] Ç÷½üÓÚ 0 ʱ£¬\[ y \] »á±äµÃ·Ç³£´ó£¨Ç÷½üÓÚÕýÎÞÇ£¬¶øµ± \[ x \] Ç÷½üÓÚÎÞÇî´óʱ£¬\[ y \] Ç÷½üÓÚ 0£¬µ«ÓÀÔ¶²»»áµÈÓÚ 0¡£ËùÒÔ 0 ²»ÔÚÖµÓòÀï¡£
Õâ¾ÍÏñÒ»¸ö¡°ÓÀÔ¶ÎÞ·¨µ½´ïµÄ±ß½ç¡±¡£¸ºÖ¸ÊýµÄÃݺ¯Êý¿ÉÒÔÎÞÏÞ½Ó½ü 0£¬µ«ÓÀÔ¶Åö²»µ½Ëü¡£
Ò»¸ö³£¼ûµÄÎóÇø£º\[ x^0 = 1 \]£¬ÄÇ \[ y = x^0 \] ÊÇÃݺ¯ÊýÂð£¿
Êǵģ¬\[ y = x^0 \] ÊÇÒ»¸öÃݺ¯Êý£¬¶øÇÒËüµÈÓÚ \[ y = 1 \]£¨µ± \[ x \neq 0 \] ʱ£©¡£µ«×¢Ò⣬\[ 0^0 \] ÊÇ䶨ÒåµÄ£¬ËùÒÔÕâ¸öº¯ÊýµÄ¶¨ÒåÓòÊÇ \[ x \neq 0 \]£¬¶øÖµÓòÊÇ \[ \{1\} \]¡£
Õâ¿´ÆðÀ´ÏñÊÇÒ»¸ö¡°³£Êýº¯Êý¡±£¬µ«Ëüȷʵ·ûºÏÃݺ¯ÊýµÄ¶¨ÒåÐÎʽ¡£ÕâÌáÐÑÎÒÃÇ£¬Ãݺ¯ÊýµÄ¼Ò×å±ÈÎÒÃǵÚÒ»ÑÛ¿´µ½µÄÒª·á¸»µÃ¶à¡£
ÈçºÎÕæÕý¡°ÕÆÎÕ¡±Ãݺ¯Êý£¿
˵ÁËÕâô¶à£¬Äã¿ÉÄÜ»áÎÊ£ºÕâЩÀí½âÓÐʲôÓã¿¿¼ÊÔÓÖ²»¿¼ÕâЩ¡°Ïë·¨¡±¡£
Æäʵ£¬ÕâЩÀí½âǡǡÊǽâÌâµÄ¡°ÄÚ¹¦¡±¡£µ±ÄãÕæÕýÃ÷°×Ϊʲô¶¨ÒåÓòÊÇÕâÑù£¬ÎªÊ²Ã´Í¼ÏñÊÇÄÇÑù£¬ÄãÔÚÃæ¶ÔÐÂÌâÐÍʱ£¬¾Í²»»á»Å¡£
±ÈÈ磬Óöµ½Ò»¸öº¯Êý \[ y = x^{-2/3} \]£¬Äã²»ÐèÒª·±Ê¼Ç£¬¶øÊÇ¿ÉÒÔÕâÑùÒ»²½²½Ë¼¿¼£º
1. Ö¸ÊýÊǸºµÄ£¬ËùÒԿ϶¨ÓÐ \[ x \neq 0 \]£¨ÒòΪ»á±ä³É·Öĸ£©¡£
2. Ö¸ÊýÊÇ·ÖÊý£¬·ÖĸÊÇ 3£¬ÊÇÆæÊý£¬ËùÒÔÁ¢·½¸ùÔÊÐí¸ºÊý¡£
3. µ«·Ö×ÓÊÇ 2£¬ÊÇżÊý£¬ËùÒÔʵ¼ÊÉÏÊÇ \[ y = \frac{1}{\sqrt[3]{x^2}} \]¡£
4. \[ x^2 \] ×ÜÊǷǸºµÄ£¬Á¢·½¸ùûÎÊÌ⣬µ«·Öĸ²»ÄÜΪÁ㣬ËùÒÔ \[ x \neq 0 \]¡£
5. Òò´Ë£¬¶¨ÒåÓòÊÇ \[ (-\infty, 0) \cup (0, +\infty) \]¡£
Äã¿´£¬Õû¸ö¹ý³Ì²»ÐèÒª¼ÇÒ䣬ֻÐèÒªÀí½â¹æÔò¡£
¸ø¼Ò³¤ºÍѧÉúµÄ½¨Òé
Èç¹ûÄãÊǼҳ¤£¬¿´µ½º¢×ÓÔÚѧÃݺ¯ÊýʱÏÔµÃÀ§»ó£¬²»Òª¼±×Å˵¡°ÕâºÜ¼òµ¥°¡£¬¶à×öÌâ¾ÍºÃÁË¡±¡£ÊÔןͺ¢×ÓÒ»Æð»¼¸¸öͼÏñ£¬±ÈÈç \[ y = x^2 \]¡¢\[ y = x^{1/2} \]¡¢\[ y = x^{-1} \]£¬È»ºóÎÊ£º¡°Äã·¢ÏÖËüÃÇÓÐʲô¹²Í¬µãÂð£¿
¡±¡°ÎªÊ²Ã´ \[ \sqrt{x} \] ²»ÄÜÓиºµÄ \[ x \]£¿¡±Í¨¹ýÌáÎÊ£¬Òýµ¼º¢×Ó×Ô¼º·¢ÏÖ¹æÂÉ£¬±ÈÖ±½Ó¸æËß´ð°¸ÓÐЧµÃ¶à¡£
Èç¹ûÄãÊÇѧÉú£¬²»ÒªÂú×ãÓÚ¡°»á×öÌ⡱¡£Ã¿´ÎѧÍêÒ»¸ö֪ʶµã£¬ÎÊ×Ô¼º£º¡°ÎÒÄܲ»Äܲ»¿´¿Î±¾£¬°ÑÕâ¸ö¸ÅÄî½²¸øÒ»¸öÍêÈ«²»¶®µÄÈËÌý£¿¡±Èç¹ûÄãÄܽ²Çå³þ£¬ÄDzÅËãÊÇÕæÕýÕÆÎÕÁË¡£
Ãݺ¯Êý£¬¾ÍÏñÊýѧÊÀ½çÀïµÄÒ»¸öССËõÓ°¡£Ëü²»¸´ÔÓ£¬µ«×ã¹»Éî¿Ì¡£Ëü²»»ªÀö£¬µ«×ã¹»»ù´¡¡£Àí½âËü£¬²»½ö½öÊÇΪÁ˽âÌ⣬¸üÊÇΪÁËÅàÑøÒ»ÖÖ¡°×·¸ùËÝÔ´¡±µÄ˼άϰ¹ß¡£
Êýѧ²»ÊǼÇÒäµÄ¶ÑÆö£¬¶øÊÇÀí½âµÄÀÛ»ý¡£µ±Ä㿪ʼÎÊ¡°ÎªÊ²Ã´¡±£¬¶ø²»ÊÇÖ»ÎÊ¡°Ôõô×ö¡±Ê±£¬ÄãÒѾ×ßÔÚÁËÕæÕýѧϰµÄ·ÉÏ¡£


×îÐÂÎÄÕÂ
- ÉîÈëÀí½âÃݺ¯Êý£º´Ó»ù´¡µ½Ë¼Î¬Ô¾Ç¨
- ÓïÎÄ¿ÎÌÃÉϵijɳ¤£ºÒ»¸öѧÉúµÄÕæÊµÍɱä¹ÊÊÂ
- ³õÖÐê¡Ñ§²»ÊÇÖյ㣺Àí½âÓëÒýµ¼Çà´ºÆÚº¢×ÓµÄÕýȷ·¾¶
- ÓïÎÄѧϰÖеġ°ÃèÊöÒÕÊõ¡±£ºÈçºÎÓÃÐÎÈݴʵãÁÁÎÄ×ÖÊÀ½ç
- Ò»Äê¼¶ÓïÎĿκóѧϰ¼Æ»®£ºÈçºÎÈÃÿ¸öº¢×Ó¶¼°®ÉÏѧϰ£¿
- ³õÖÐÊýѧ×ÔѧµÄÓÐЧ·¾¶£ºÈçºÎϵͳ²¹Ñ§²¢ÎȲ½ÌáÉý
- ÈÃÓïÎÄѧϰ±äµÃÓÐȤ£º¸ø¼Ò³¤ºÍº¢×ÓµÄʵÓÃÖ¸ÄÏ
- ¸ßЧѧϰ֮µÀ£ºÀúÊ·½ÌʦµÄʵÓÃÃØ¼®
- ·ÖÊý²»ÄÑ£¡´ÓС°×µ½¸ßÊÖµÄ5¸öʵÓü¼ÇÉ£¬º¢×ÓÒ»¿´¾Í¶®
- λÖõÄÏà¶ÔÐÔ£º´Ó¡°ÎÒÔÚÄãÄϱߡ±ËµÆð

ÈÈÃÅÎÄÕÂ
- ¸ßÖÐÊýѧ³£¼ûµÄ½ÌѧģʽÓÐÄÄЩ£¿
- Ó×¶ùÔ°¼Ò³¤»á¼Ò³¤´ú±í½²»°¸å
- СѧÊýѧ½ÌʦÈçºÎͨ¹ý¸±Òµ»ò¼æÖ°Ôö¼ÓÊÕÈ룿
- Ó¢ÓïÓï·¨Öеġ°Should + ¶¯´ÊÔÐΡ°£º¸ßÈýѧÉú±ØÐëÕÆÎÕµÄÉî²ãÂß¼Óëʵս¼¼ÇÉ
- Сѧ¡¢³õÖС¢¸ßÖи÷½×¶Îѧϰ·½·¨È«¹¥ÂÔ£¬ÖúÁ¦º¢×ӳɼ¨ÎȲ½ÌáÉý£¡
- ÇáËÉÕÆÎÕ³õÖÐÊýѧ¡°¾ø¶ÔÖµ¡±£º´ÓÀí½âµ½Ó¦ÓõÄÍêÕûÖ¸ÄÏ
- ÕÆÎÕ³õ¶þÊýѧºËÐÄ֪ʶµã£¬ÈÃѧϰ¸üÇáËÉ
- ÊýѧÊÖ³±¨µÄħ·¨»¨Ô°£ºÈú¢×ÓÔÚ´´×÷Öа®ÉÏÊýѧ
- ´Ó¿Þ±Ç×Óµ½Ð¦¿ª»¨£ºÒ»Äê¼¶ÐÂÉúÈëѧȫ¹¥ÂÔ£¨¼Ò³¤±Ø¿´°æ£©
- ×ß½ø¡¶Àñ¼Ç¡·£º½â¶Á¡°´óͬÉç»á¡±µÄÀíÏëÓëÏÖʵ
- ³Â½ÌÔ± ±±¾©Íâ¹úÓï´óѧ ¹¤É̹ÜÀíÀà
- ×Þ½ÌÔ± ºþÄÏÎÄÀíѧԺ ÎïÁ÷¹ÜÀí
- ¹ù½ÌÔ± Ê×¶¼Ê¦·¶´óѧ ÕÜѧ
- Áõ½ÌÔ± »ª±±µçÁ¦´óѧ(±±¾©) µçÆø¹¤³Ì¼°Æä×Ô¶¯»¯
- Âí½ÌÔ± Çຣʦ·¶´óѧ Сѧ½ÌÓý£¨È«¿Æ£©
- Ëï½ÌÔ± ÖйúµØÖÊ´óѧ(±±¾©) µç×ÓÐÅÏ¢
- Àî½ÌÔ± ±±¾©´óѧ ¿Õ¼ä¿ÆÑ§Óë¼¼Êõ
- ¸ß½ÌÔ± Öйú¿óÒµ´óѧ(±±¾©) Ó¢Óï
- É̽ÌÔ± ÖйúÈËÃñ´óѧ ½ðÈÚ
- Íõ½ÌÔ± Ê×¶¼¾¼ÃóÒ×´óѧ ÀͶ¯ÓëÉç»á±£ÕÏ