易教网-北京家教
当前城市:北京 [切换其它城市] 
www.eduease.com 请家教热线:400-6789-353 010-64450797 010-64436939

易教网微信版微信版 APP下载
易教播报

欢迎您光临易教网,感谢大家一直以来对易教网北京家教的大力支持和关注!我们将竭诚为您提供更优质便捷的服务,打造北京地区请家教,做家教,找家教的专业平台,敬请致电:010-64436939

当前位置:家教网首页 > 家庭教育 > 高考数学选择题高分解题策略

高考数学选择题高分解题策略

【来源:易教网 更新时间:2024-10-05
高考数学选择题高分解题策略

篇1:高考数学选择题高分解题策略

高考数学选择题爆强解题技巧

高考数学可能是很多人的弱势科目,下面有途网小编跟大家说说高考数学选择题如何提分,希望对你有帮助。

高考数学选择题有哪些规律

数形结合法:就是把高考数学问题中的数量关系和空间图形结合起来思考问题。数与型相互转化,使问题化繁为简,得以解决。

特殊值法:有些高考数学问题从理论上论证它的正确性比较困难,但是代入一些满足题意的特殊值,验证它是错误的比较容易,此时,我们就可以用这种方法来解决问题。

划归转化法:运用某种方法把生疏问题转化为熟悉问题,把复杂问题转化为简单问题,使问题得以解决。

方程法:通过设未知数,找等量关系,建方程,解方程,使高考数学问题得以解决的方法。

实践操作法:近几年出现了一些纸片折叠剪裁的高考数学题目,我们在考试中实际动手操作一下,就会很容易得出答案。

假设法:有些高考数学题目情况繁多,无从下手,这时候我们就可以先假设一种情况,然后从这个假设出发,排除不可能的情况,得出正确结论。

高考数学5种答题思路

1、函数与方程思想

函数思想是指运用运动变化的观点,分析和研究数学中的数量关系,通过建立函数关系运用函数的图像和性质去分析问题、转化问题和解决问题;方程思想,是从问题的数量关系入手,运用数学语言将问题转化为方程或不等式模型去解决问题。同学们在解高考数学题时可利用转化思想进行函数与方程间的相互转化。

2、 数形结合思想

高考数学研究的对象可分为两大部分,一部分是数,一部分是形,但数与形是有联系的,这个联系称之为数形结合或形数结合。它既是寻找问题解决切入点的“法宝”,又是优化解题途径的“良方”,因此建议同学们在解答高考数学题时,能画图的尽量画出图形,以利于正确地理解题意、快速地解决问题。

3、特殊与一般的思想

用这种思想解高考数学选择题有时特别有效,这是因为一个命题在普遍意义上成立时,在其特殊情况下也必然成立,根据这一点,同学们可以直接确定选择题中的正确选项。不仅如此,用这种思想方法去探求高考数学主观题的求解策略,也同样有用。

4、极限思想解题步骤

极限思想解决问题的一般步骤为:一、对于所求的未知量,先设法构思一个与它有关的变量;二、确认这变量通过无限过程的结果就是所求的未知量;三、构造函数(数列)并利用极限计算法则得出结果或利用图形的极限位置直接计算结果。

5、分类讨论思想

同学们在高考数学解题时常常会遇到这样一种情况,解到某一步之后,不能再以统一的方法、统一的式子继续进行下去,这是因为被研究的对象包含了多种情况,这就需要对各种情况加以分类,并逐类求解,然后综合归纳得解,这就是分类讨论。引起分类讨论的原因很多,数学概念本身具有多种情形,数学运算法则、某些定理、公式的限制,图形位置的不确定性,变化等均可能引起分类讨论。建议同学们在分类高考数学讨论解题时,要做到标准统一,不重不漏。

篇2:高考数学选择题高分解题策略

高考数学选择题必备解题技巧

高考数学可能是很多人的弱势科目,下面有途网小编跟大家说说高考数学选择题如何提分,希望对你有帮助。

如何做好高考数学选择题

1.顺推破解法:利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。

2.逆推验证法(代答案入题干验证法):将选项代入题干进行验证,从而否定错误选项而得出正确答案的方法。

3.正难则反法:从题的正面解决比较难时,可从选项出发逐步逆推找出符合条件的结论,或从反面出发得出结论。

4.数形结合法:由题目条件,做出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。

5.递推归纳法:通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。

6.特征分析法:对题设和选择项的特点进行分析,发现规律,归纳得出正确判断的方法。

7.估值选择法:有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。

高考数学选择题解题规律

1.求曲线方程的题目,如果知道曲线的形状,则可选择待定系数法,如果不知道曲线的形状,则所用的步骤为建系、设点、列式、化简(注意去掉不符合条件的特殊点)。

2.求椭圆或是双曲线的离心率,建立关于a、b、c之间的关系等式即可。

3.三角函数求周期、单调区间或是最值,优先考虑化为一次同角弦函数,然后使用辅助角公式解答;解三角形的题目,重视内角和定理的使用;与向量联系的题目,注意向量角的范围。

4.数列的题目与和有关,优选和通公式,优选作差的方法;注意归纳、猜想之后证明;猜想的方向是两种特殊数列;解答的时候注意使用通项公式及前n项和公式,体会方程的思想。

5.立体几何第一问如果是为建系服务的,一定用传统做法完成,如果不是,可以从第一问开始就建系完成;注意向量角与线线角、线面角、面面角都不相同,熟练掌握它们之间的三角函数值的转化;锥体体积的计算注意系数1/3,而三角形面积的计算注意系数1/2;与球有关的题目也不得不防,注意连接“心心距”创造直角 三角形解题。

6.导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上。

7.导数的题目常规的一般不难,但要注意解题的层次与步骤,如果要用构造函数证明不等式,可从已知或是前问中找到突破口,必要时应该放弃;重视几何意义的应用,注意点是否在曲线上。

8.遇到复杂的式子可以用换元法,使用换元法必须注意新元的取值范围,有勾股定理型的已知,可使用三角换元来完成。

9.注意概率分布中的二项分布,二项式定理中的通项公式的使用与赋值的方法,排列组合中的枚举法,全称与特称命题的否定写法,取值范或是不等式的解的端点能否取到需单独验证,用点斜式或斜截式方程的时候考虑斜率是否存在等。

篇3:高考数学选择题高分解题策略

篇3:高考数学选择题高分解题策略

  高考数学选择题高分解题策略一、排除法

  所谓排除法,就是经过判断推理,将四个备选答案中的三个迷惑答案一一排除,剩下一个正确答案.排除法也叫筛选法.

  例1 若a>b,且c为实数,则下列各式中正确的是( ).

  A.ac>bc B.acbc2 D.ac2≥bc2

  解析:由于c为实数,所以c可能大于0、小于0、也可能等于0.

  当c=0时,显然A、B、C均不成立,故应排除A、B、C.对于D来说,当c>0,c<0,c=0时,ac2≥bc2都成立,故应选D.

  例2 在Rt△ABC中,∠C=90°,AC=15,BC=8,则sinA+sinB+sinC=( ).

  A. B. C. D.

  解析:由∠C=90°可得 sinC=1. 又因为∠A、∠B均为锐角,所以sinA、sinB均为正数,从而 sinA+sinB+sinC>1.而A、B、C三个选项中的值均小于1,于是排除A、B、C ,故选 D.

  高考数学选择题高分解题策略二、特殊值法

  当某些题目比较抽象,难以对其作出判断时,我们可以在符合题目条件的范围内,用某些特殊值代替题目中的字母,然后作出判断.我们将这种解题的方法称为特殊值法.

  例3 若二次方程x2+2px+2q=0有实数根,其中p,q为奇数,那么它的根一定为( ).

  A.奇数 B.偶数 C.分数 D.无理数

  解析:此题关于x的方程的系数为字母p、q,虽然知道p、q为奇数,但仍比较抽象,我们可以根据题设条件赋予未知字母特定的值,然后再去解这个一元二次方程,它的根的情况便一目了然了.

  不妨设p=3,q=1,则原方程变为x2+6x+2=0解得x=± -3,显然这是一个无理数,故应选择D.

  例4 若a、b、c都不为零,但a+b+c=0,则 + + 的值( ).

  A.正数 B.零 C.负数 D.不能确定

  解析:此题若按传统方法进行通分 将非常麻烦 且不易求解,若采用特殊值法, 则能化繁为简.令a=1、b=1、c=-2,代入原式得 + + = + - =0,故选B.

  高考数学选择题高分解题策略三、代入检验法

  当某些问题(如方程、函数等)解起来比较麻烦时,可以换一个角度进行分析判断,即把给出的根、给出的点或给出的值代入方程或函数式中进行验证,从而使问题得以简化.这类处理问题的方法被称为代入法,又叫验证法.

  例5 若最简根式 和 是同类根式,则a、b的值为( ).

  A.a=1 b=1 B.a=1 b=-1

  C.a=-1 b=-1 D.a=-1 b=1

  解析:由同类根式的定义可知根指数相同,被开方数也相同,这样便可列出一个二元一次方程组,再解这个二元一次方程组,用求出的解去检验给出的a、b的值,显然比较麻烦,如采用将给出的a、b的值分别代入最简根式中,再作出判断便容易多了.

  当把a=1、b=1代入根式后分别得出 和 ,显然它们为同类根式,故应选A.

  例6 若△ABC的三边长分别为整数,周长为11,且一边长为4,则这个三角形的最大边长为( ).   A.7 B.6 C.5 D.4

  解析:(1)若最大边为7,7+4=11,两边长就等于周长显然不行;(2)若最大边为6,则另一边只能为1,1、4、6无法构成三角形;(3)若最大边为5,且一边长为4.则第三边为2,因此5为最大边,无需再考虑4的情况.故选C.

  高考数学选择题高分解题策略四、估算法

  估算法是一种粗略的计算方法,实质上是一种快速的近似计算方法,即对题目所给条件或信息作适当的变形与整理,从而对结果确定出一个范围或作出一个估计.

  例7 已知地球的表面积约等于5.1亿平方千米,其中水面面积约等于陆地面积的 倍,则陆地面积约等于( )亿平方千米(精确到0.1).

  A.1.5 B.2.1 C.3.6 D.12.5   解析:此题如果采取列算式计算比较准确,实际上,可粗略地估算出地球的表面积是其中陆地面积的3倍多,而5.1÷3<

  2,故选A.

 

篇4:高考数学选择题高分解题策略

  高考数学选择题的五种解题技巧

  高考数学解题技巧一、排除法解题技巧

  所谓排除法,就是经过判断推理,将四个备选答案中的三个迷惑答案一一排除,剩下一个正确答案.排除法也叫筛选法.

  例1 若a>b,且c为实数,则下列各式中正确的是( ).

  A.ac>bc B.acbc2 D.ac2≥bc2

  解析:由于c为实数,所以c可能大于0、小于0、也可能等于0.

  当c=0时,显然A、B、C均不成立,故应排除A、B、

  C.对于D来说,当c>0,c<0,c=0时,ac2≥bc2都成立,故应选D.

  例2 在Rt△ABC中,∠C=90°,AC=15,BC=8,则sinA+sinB+sinC=( ).

  A. B. C. D.

  解析:由∠C=90°可得 sinC=1. 又因为∠A、∠B均为锐角,所以sinA、sinB均为正数,从而 sinA+sinB+sinC>1.而A、B、C三个选项中的值均小于1,于是排除A、B、C ,故选 D.

  高考数学解题技巧二、特殊值法解题技巧

  当某些题目比较抽象,难以对其作出判断时,我们可以在符合题目条件的范围内,用某些特殊值代替题目中的字母,然后作出判断.我们将这种解题的方法称为特殊值法.

  例3 若二次方程x2+2px+2q=0有实数根,其中p,q为奇数,那么它的根一定为( ).

  A.奇数 B.偶数 C.分数 D.无理数

  解析:此题关于x的方程的系数为字母p、q,虽然知道p、q为奇数,但仍比较抽象,我们可以根据题设条件赋予未知字母特定的值,然后再去解这个一元二次方程,它的根的情况便一目了然了.

  不妨设p=3,q=1,则原方程变为x2+6x+2=0解得x=± -3,显然这是一个无理数,故应选择D.

  例4 若a、b、c都不为零,但a+b+c=0,则 + + 的值( ).   A.正数 B.零 C.负数 D.不能确定

  解析:此题若按传统方法进行通分 将非常麻烦 且不易求解,若采用特殊值法, 则能化繁为简.令a=1、b=1、c=-2,代入原式得 + + = + - =0,故选B.   高考数学解题技巧三、代入检验法解题技巧

  当某些问题(如方程、函数等)解起来比较麻烦时,可以换一个角度进行分析判断,即把给出的根、给出的点或给出的值代入方程或函数式中进行验证,从而使问题得以简化.这类处理问题的方法被称为代入法,又叫验证法.

  例5 若最简根式 和 是同类根式,则a、b的值为( ).

  A.a=1 b=1 B.a=1 b=-1

  C.a=-1 b=-1 D.a=-1 b=1

  解析:由同类根式的定义可知根指数相同,被开方数也相同,这样便可列出一个二元一次方程组,再解这个二元一次方程组,用求出的解去检验给出的a、b的值,显然比较麻烦,如采用将给出的a、b的值分别代入最简根式中,再作出判断便容易多了.

  当把a=1、b=1代入根式后分别得出 和 ,显然它们为同类根式,故应选A.

  例6 若△ABC的三边长分别为整数,周长为11,且一边长为4,则这个三角形的最大边长为( ).

  A.7 B.6 C.5 D.4

  解析:(1)若最大边为7,7+4=11,两边长就等于周长显然不行;(2)若最大边为6,则另一边只能为1,1、4、6无法构成三角形;(3)若最大边为5,且一边长为4.则第三边为2,因此5为最大边,无需再考虑4的情况.故选C.

  高考数学解题技巧四、估算法解题技巧

  估算法是一种粗略的计算方法,实质上是一种快速的近似计算方法,即对题目所给条件或信息作适当的变形与整理,从而对结果确定出一个范围或作出一个估计.

  例7 已知地球的表面积约等于5.1亿平方千米,其中水面面积约等于陆地面积的 倍,则陆地面积约等于( )亿平方千米(精确到0.1).

  A.1.5 B.2.1 C.3.6 D.12.5

  解析:此题如果采取列算式计算比较准确,实际上,可粗略地估算出地球的表面积是其中陆地面积的3倍多,而5.1÷3<2,故选A.

  例8 如图1,将边长为8cm的正方形纸片ABCD折叠,使点D落在BC边的中点E处,点A落在点F处,折痕为MN,则线段CN的长度为( ).

  A.3cm B.4cm   C.5cm D.6cm 图1

  解析:在Rt△CEN中,可运用勾股定理求出线段CN的长,但如果采用估算的方法会使解题简单.由于点E是BC的中点,所以EC=4cm,在Rt△CEN中,由于EN是斜边,所以EN>4cm,又EN=DN,而DN+CN=8cm,可知CN<4cm,故选A.

  高考数学解题技巧五、实践操作法解题技巧

  与剪、折等操作有关的图形变换题是各地中考的热点题型,只凭想象不好确定,如果按照剪、折的顺序动手操作一下,就可以很直观地得到答案,往往能达到快速求解的目的.

  例9 折纸是一种传统的手工艺术,它能培养手指的灵活性、协调能力,还能培养人的智力.在折纸中,蕴含着许多数学知识,我们可以通过折纸验证数学猜想.如把一张直角三角形纸片按照图2中①~④的过程折叠后展开,请选择所得到的数学结论( ).

  图2

  A.角的平分线上的点到角的两边的距离相等.

  B.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.

  C.直角三角形斜边上的中线等于斜边的一半.

  D.如果三角形一条边上的中线等于这条边的一半,那么这个三角形是直角三角形.

  解析:严格按照图中的方法亲自动手操作一下,答案即可很直观地呈现出来.也可仔细观察图形特点,利用对称性与排除法求解.

  解:如图3②,∵△CDE由△ADE翻折而成,

  ∴AD=CD,

  如图3③,∵△DCF由△DBF翻折而成,

  ∴BD=CD,   ∴AD=BD=CD,点D是AB的中点,

  ∴CD= AB,即直角三角形斜边上的中线等于斜边的一半. 故选C.

  图3

  例10 将一张正方形纸片按下列顺序折叠,将最后折叠的纸片沿虚线剪去上方的小三角形,将纸片展开,得到的图形是( ).

  A. B.   C. D.

  解析:许多同学没有动手习惯,仅靠凭空想象,结果不仅花费时间而且还不能作出正确的判断.最简单、有效的方法是准备一张正方形纸,根据题目给出的规则、顺序进行折叠、剪拼,则容易发现展开后的形状是C.

篇5:高考数学选择题高分解题策略

篇5:高考数学选择题高分解题策略

高考数学复习必备选择题解题技巧

高考数学可能是很多人的弱势科目,下面有途网小编跟大家说说高考数学选择题如何提分,希望对你有帮助。

高考数学选择题有哪些规律

铁律1:高考数学函数或方程或不等式的题目,先直接思考后建立三者的联系。首先考虑定义域,其次使用“三合一定理”。

铁律2:如果高考数学在方程或是不等式中出现超越式,优先选择数形结合的思想方法。

铁律3:面对含有参数的初等函数来说,在研究的时候应该抓住参数没有影响到的不变的性质。如所过的定点,二次函数的对称轴或是……

铁律4:高考数学选择与填空中出现不等式的题目,优选特殊值法。

铁律5:求参数的取值范围,应该建立关于参数的等式或是不等式,用函数的定义域或是值域或是解不等式完成,在对式子变形的过程中,优先选择分离参数的方法。

铁律6:恒成立问题或是它的反面,可以转化为最值问题,注意二次函数的应用,灵活使用闭区间上的最值,分类讨论的思想,分类讨论应该不重复不遗漏。

高考数学选择题蒙题技巧

一、直接法:根据高考数学选择题的题设条件,通过计算、推理或判断,最后达到题目要求。这种直接根据已知条件进行计算、判断或推理而得到的答案的解选择题的方法称之为直接法。

二、间接法:间接法又称试验法、排除法或筛选法,又可将间接法分为结论排除法、特殊值排除法、逐步排除法和逻辑排除法等方法。

1)结论排除法:把高考数学题目所给的四个结论逐一代回原题中进行验证,把错误的排除掉,直至找到正确的答案,这一逐一验证所给结论正确性的解答选择题的方法称之为结论排除法。

2)特殊值排除法:有些高考数学选择题所涉及的数学命题与字母的取值范围有关,在解决这类解答题,可以考虑从取值范围内选取某几个特殊的值,代入原命题进行验证,然后排除错误的,保留正确的,这种解决答题的方法称之为特殊值排除法。

3)逐步排除法:如果我们在计算或推导的过程中不是一步到位,而是逐步进行,即采用“走一走、瞧一瞧”的办法,每走一步都与四个结论比较一次,排除掉不可能的,这样也许走不到最后一步,三个错误的结论就被全排除掉了。

4)逻辑排除法:在高考数学选择题的编制过程中,应该注意四个选择答案之间的逻辑关系,尽量避免等价、包含、对抗等关系的出现,但实际上有些选择题并没有注意到这些原则,致使又产生了一种新的解答选择题的方法。它是抛开高考数学题目的已知条件,利用四个选择答案之间的逻辑关系进行取舍的一种方法,当然最后还有可能使用其他排除的方法才能得到正确的答案。

篇6:高考数学选择题高分解题策略

怎么秒杀数学选择题,高考数学选择题高分解题策略

高考即将来临,高考数学选择题分值比较大,而且题目小巧灵活,有一定深度与综合性,所以迅速、准确地选出答案才是得分的关键。下面有途网小编给大家分享一下怎么秒杀数学选择题,高考数学选择题的得分技巧,希望对广大考生有所帮助!

1.估值选择法

有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。

2.正难则反法

从题的正面解决比较难时,可从选择支出发逐步逆推找出符合条件的结论,或从反面出发得出结论。

3.特征分析法

对题设和选择支的特点进行分析,发现规律,归纳得出正确判断的方法。

4.逆推验证法(代答案入题干验证法)

将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。

5.剔除法

利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。

6.递推归纳法:通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。

6.顺推破解法

利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。

7.数形结合法

由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。

8.特值检验法

对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。

9.极端性原则

将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。

10对比归谬法

对于一些选项间有相互关联的高考选择题,有时可能会出现如果选项A正确即会有选项B正确或选项C也正确的情况,对于答案应为单选或双选的选择题可用此方法进行排除错误选项。

11.逆向思维法

很多物理过程具有可逆性,如运动的可逆性,光路的可逆性等,在沿着正向“由因到果”去分析受阻时,可“反其道而行之”,沿着逆向“由果到因”的过程去思考,常常收到化难为易、出奇制胜的效果。

篇7:高考数学选择题高分解题策略

篇7:高考数学选择题高分解题策略

  特值检验法:

  对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。

  极端性原则:

  极将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。

  剔除法:

  剔除利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。

  数形结合法:

  由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。

  递推归纳法:

  通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。

  顺推破解法:

  顺利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。

  逆推验证法(代答案入题干验证法):

  将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。

  正难则反法:

  正从题的正面解决比较难时,可从选择支出发逐步逆推找出符合条件的结论,或从反面出发得出结论。

  特征分析法:

  特对题设和选择支的特点进行分析,发现规律,归纳得出正确判断的方法。

  估值选择法:

  有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。

延伸阅读
搜索教员