易教网-北京家教
当前城市:北京 [切换其它城市] 
www.eduease.com 请家教热线:400-6789-353 010-64435636 010-64450797

易教网微信版微信版 APP下载
易教播报

欢迎您光临易教网,感谢大家一直以来对易教网北京家教的大力支持和关注!我们将竭诚为您提供更优质便捷的服务,打造北京地区请家教,做家教,找家教的专业平台,敬请致电:010-64436939

当前位置:家教网首页 > 家庭教育 > 奥数探秘之欧拉定理

奥数探秘之欧拉定理

【来源:易教网 更新时间:2024-08-27
奥数探秘之欧拉定理

简单多面体的顶点数v、面数f及棱数e间有关系

v+f-e=2

这个公式叫欧拉公式。公式描述了简单多面体顶点数、面数、棱数特有的规律。

认识欧拉

欧拉,瑞士数学家,13岁进巴塞尔大学读书,得到著名数学家贝努利的精心指导.欧拉是科学史上最多产的一位杰出的数学家,他从19岁开始发表论文,直到76岁,他那不倦的一生,共写下了886本书籍和论文,其中在世时发表了700多篇论文。彼得堡科学院为了整理他的著作,整整用了。

欧拉著作惊人的高产并不是偶然的。他那顽强的毅力和孜孜不倦的治学精神,可以使他在任何不良的环境中工作:他常常抱着孩子在膝盖上完成论文。即使在他双目失明后的间,也没有停止对数学的研究,口述了好几本书和400余篇的论文。当他写出了计算天王星轨道的计算要领后离开了人世。欧拉永远是我们可敬的老师。

欧拉研究论著几乎涉及到所有数学分支,对物理力学、天文学、弹道学、航海学、建筑学、音乐都有研究!有许多公式、定理、解法、函数、方程、常数等是以欧拉名字命名的。欧拉写的数学教材在当时一直被当作标准教程。

19世纪伟大的数学家高斯(gauss,1777-1855)曾说过“研究欧拉的著作永远是了解数学的最好方法”。欧拉还是数学符号发明者,他创设的许多数学符号,例如 π,i,e,sin,cos,tg,σ,f (x)等等,至今沿用。

欧拉不仅解决了彗星轨迹的计算问题,还解决了使牛顿头痛的月离问题。对著名的“哥尼斯堡七桥问题”的完美解答开创了“图论”的研究。欧拉发现,不论什么形状的凸多面体,其顶点数v、棱数e、面数f之间总有关系v+f-e=2,此式称为欧拉公式。

v+f-e即欧拉示性数,已成为“拓扑学”的基础概念。那么什么是“拓扑学”?欧拉是如何发现这个关系的?他是用什么方法研究的?今天让我们沿着欧拉的足迹,怀着崇敬的心情和欣赏的态度探索这个公式......

欧拉定理的意义

(1)数学规律:公式描述了简单多面体中顶点数、面数、棱数之间特有的规律

(2)思想方法创新:定理发现证明过程中,观念上,假设它的表面是橡皮薄膜制成的,可随意拉伸;方法上将底面剪掉,化为平面图形(立体图→平面拉开图)。

(3)引入拓扑学:从立体图到拉开图,各面的形状、长度、距离、面积等与度量有关的量发生了变化,而顶点数,面数,棱数等不变。

定理引导我们进入一个新几何学领域:拓扑学。我们用一种可随意变形但不得撕破或粘连的材料(如橡皮波)做成的图形,拓扑学就是研究图形在这种变形过程中的不变的性质。

(4)提出多面体分类方法:

在欧拉公式中, f (p)=v+f-e 叫做欧拉示性数。欧拉定理告诉我们,简单多面体f (p)=2。

除简单多面体外,还有非简单多面体。例如,将长方体挖去一个洞,连结底面相应顶点得到的多面体。它的表面不能经过连续变形变为一个球面,而能变为一个环面。其欧拉示性数f (p)=16+16-32=0,即带一个洞的多面体的欧拉示性数为0。

(5)利用欧拉定理可解决一些实际问题

如:为什么正多面体只有5种? 足球与c60的关系?否有棱数为7的正多面体?等

欧拉定理的证明

方法1:(利用几何画板)

逐步减少多面体的棱数,分析v+f-e

先以简单的四面体abcd为例分析证法。

去掉一个面,使它变为平面图形,四面体顶点数v、棱数v与剩下的面数f1变形后都没有变。因此,要研究v、e和f关系,只需去掉一个面变为平面图形,证v+f1-e=1

(1)去掉一条棱,就减少一个面,v+f1-e不变。依次去掉所有的面,变为“树枝形”。

(2)从剩下的树枝形中,每去掉一条棱,就减少一个顶点,v+f1-e不变,直至只剩下一条棱。

以上过程v+f1-e不变,v+f1-e=1,所以加上去...

以上过程v+f1-e不变,v+f1-e=1,所以加上去掉的一个面,v+f-e =2。

对任意的简单多面体,运用这样的方法,都是只剩下一条线段。因此公式对任意简单多面体都是正确的。

方法2:计算多面体各面内角和

设多面体顶点数v,面数f,棱数e。剪掉一个面,使它变为平面图形(拉开图),求所有面内角总和σα

一方面,在原图中利用各面求内角总和。

设有f个面,各面的边数为n1,n2,…,nf,各面内角总和为:

σα = [(n1-2)·1800+(n2-2)·1800 +…+(nf-2) ·1800]

= (n1+n2+…+nf -2f) ·1800

=(2e-2f) ·1800 = (e-f) ·3600 (1)

另一方面,在拉开图中利用顶点求内角总和。

设剪去的一个面为n边形,其内角和为(n-2)·1800,则所有v个顶点中,有n个顶点在边上,v-n个顶点在中间。中间v-n个顶点处的内角和为(v-n)·3600,边上的n个顶点处的内角和(n-2)·1800。

所以,多面体各面的内角总和:

σα = (v-n)·3600+(n-2)·1800+(n-2)·1800

=(v-2)·3600. (2)

由(1)(2)得: (e-f) ·3600 =(v-2)·3600

所以 v+f-e=2.

欧拉定理的运用方法

(1)分式:

a^r/(a-b)(a-c)+b^r/(b-c)(b-a)+c^r/(c-a)(c-b)

当r=0,1时式子的值为0

当r=2时值为1

当r=3时值为a+b+c

(2)复数

由e^iθ=cosθ+isinθ,得到:

sinθ=(e^iθ-e^-iθ)/2i

cosθ=(e^iθ+e^-iθ)/2

(3)三角形

(3)三角形

设r为三角形外接圆半径,r为内切圆半径,d为外心到内心的距离,则:

d^2=r^2-2rr

(4)多面体

设v为顶点数,e为棱数,f是面数,则

v-e+f=2-2p

p为欧拉示性数,例如

p=0 的多面体叫第零类多面体

p=1 的多面体叫第一类多面体

(5) 多边形

设一个二维几何图形的顶点数为v,划分区域数为ar,一笔画笔数为b,则有:

v+ar-b=1

(如:矩形加上两条对角线所组成的图形,v=5,ar=4,b=8)

(6). 欧拉定理

在同一个三角形中,它的外心circumcenter、重心gravity、九点圆圆心nine-point-center、垂心orthocenter共线。

其实欧拉公式是有很多的,上面仅是几个常用的。

使用欧拉定理计算足球五边形和六边形数

问:足球表面由五边型和六边型的皮革拼成,计算一共有多少个这样的五边型和六边型?

答:足球是多面体,满足欧拉公式f-e+v=2,其中f,e,v分别表示面,棱,顶点的个数

设足球表面正五边形(黑皮子)和正六边形(白皮子)的面各有x个和y个,那么

面数f=x+y

棱数e=(5x+6y)/2(每条棱由一块黑皮子和一块白皮子共用)

顶点数v=(5x+6y)/3(每个顶点由三块皮子共用)

由欧拉公式,x+y-(5x+6y)/2+(5x+6y)/3=2,解得x=12

所以共有12块黑皮子

所以,黑皮子一共有12×5=60条棱,这60条棱都是与白皮子缝合在一起的

对于白皮子来说:每块白色皮子的6条边中,有3条边与黑色皮子的边缝在一起,另3条边则与其它白色皮子的边缝在一起,所以白皮子所有边的一半是与黑皮子缝合在一起的

那么白皮子就应该一共有60×2=120条边,120÷6=20

所以共有20块白皮子。

所以共有20块白皮子。

延伸阅读
搜索教员
-更多-

最新教员

  1. 具教员 首都医科大学 临床医学 泌尿外科
  2. 关教员 首都师范大学 小学教育
  3. 张教员 北京航空航天大学 飞行器动力工程
  4. 吴教员 湖南大学 给排水科学与工程
  5. 唐教员 北京联合大学 电子信息工程
  6. 周教员 衡水学院 学前教育
  7. 陈教员 北京航空航天大学 生物与医学工程
  8. 田教员 北京物资学院 信息管理与信息系统
  9. 张教员 北京航空航天大学 数学与应用数学
  10. 张教员 沈阳航空航天大学 计算机科学与技术