高三数学高效复习策略
【来源:易教网 更新时间:2024-10-30】
篇1:高三数学高效复习策略
学而思高考研究中心数学组 邓杨
高考离现在还有5个月,各区期末考试也在近日陆续展开,其中东城区的数学期末考试已经结束,每年高三的这个阶段出现的问题今年也没有例外。
一、三个阶段的自检自查,发现问题。
学而思高考研究中心数学组通过研究总结,从数学知识的学习到高考,分成三个步骤:
1,知识获取和理解阶段(考试说明A级别要求)
2,知识转化为解题能力的阶段(考试说明B,C级别要求)
3,解题能力到应试能力的转变
学员要通过这次期末考试的成绩来进行这三方面的分析,要分析自己在这次考试中的失分是因为哪方面的不足造成的
有哪些丢分是因为对所涉及的知识不了解,或者了解不全面?--对应知识点缺陷。
有哪些丢分是知道题目考哪个知识,但是不知道怎么用?--对应解题能力缺陷。
有哪些丢分是因为时间来不及,计算错误,填错了等问题--对应应试能力缺陷。
点击下载全文
篇2:高三数学高效复习策略
立足基础注重审题减少遗憾
每次考试结束试卷发下来,会出现明明会做、反而做错了的题,究其原因出现在审题上。审题是解题的关键,数学题是由文字语言、符号语言和图形语言构成的,拿到题后要“宁停三分,不抢一秒”,否则会出现看错数字、漏看文字、理解不透题意等现象,可采取“一慢一快”战术,即审题要慢、答题要快。如果理解不深、思路不清、运用不活,这表明数学基础不牢固,在复习时一定要突出重点,夯实基础。要理清各部分内容之间的逻辑关系,全面、准确地把握概念,在此基础上加强记忆,加强对易错、易混知识的梳理。
注重题型形成定势减少表达之错
要在老师指导下多做典型题目,牢记解题方法。熟能生巧,所以要多做题。但要注意两点,一是切勿盲目被动做题;二是感觉时间紧张的时候,要大量看题。如果发现有知识点掌握得不牢固,就要多做题。要注意答题的规范性,平时做作业要严格按照规范书写表达,按照高考评分标准写出必要的步骤。例如在立体几何中,作证求证过程不规范,应用题缺乏必要的建模过程,概率问题缺乏必要的分析和表述,这些都是不规范的表现,从而失去得分的机会。
纠错总结反思归纳灵活变通
要重复做错过的题目,因为错过的题目一定是你的薄弱环节。人的聪明程度和其重视错误的程度有关。聪明人绝对不会容许自己犯两次同样的错误的。同时,要通过解答典型题目,由小见大,加深对主干知识和解题基本方法的理解,对所学知识有更清晰的认识,争取达到举一反三、触类旁通的效果。
数学高考是数学知识和能力的竞赛,更是意志品质的一种较量,要克服考试中的紧张情绪,以平和的心态参加考试,合理分配考试时间,在高考中定会取得理想成绩。
篇3:高三数学高效复习策略
一、明晰一个规则:“一轮靠敬业,二轮靠水平”。
一轮靠老师勤奋、学生努力;二轮主要看老师的把握水平(课标、考纲),研究水平(选题、集体备课),辅导水平(课堂辅导,课后个辅)。
一看教师对高考把握水平。对《课标》和《考试大纲》的理解有高度,清楚高考命题方向,把握高考试题难度,确定好复习的重点难点。
二看教师对问题研究水平。选择试题,练习检测与高考对路,针对学情,有选择性;集体备课、题目的精选精编、课堂、试卷作业批改与反馈等各项环节扎实有效。
三看教师对学生辅导水平。课堂辅导,课堂驾驭水平。有效调动课堂氛围,提高课堂效率,进行有高度的点拨指导,让学生在实战中不断提高应试能力;课后个辅,和学生的情感沟通很关键,抓住临界生问题,针对性指导。
二、明确两个做法:抓审题,抓个辅
抓审题:让学生说出来,让思维呈现出来。充分调动学生审题、变题能力;
抓个辅:教师要有个辅学生问题清单,让辅导有针对性;个辅全程性,个辅不只在课后,课堂个辅也是关键。
三、坚持三个过关:必须记忆过关;必须限时过关;必须心理过关
1、每节课必须花5分钟过关记忆性知识。数学知识也需要记忆,数学方法也需要理解记忆,数学思维途径也需要变式记忆;
2、学生训练最大的状态就是能限时过关,应试能力也是数学解题能力,极大限度地减少题海战术;限时训练也包括规范作答的过关。
3、学生最大的障碍就是就是心理问题。很多学生数学致困的原因出在心理问题上未过关,所以教师要特别注意心理指导。
四、避免四个重复:重复一轮复习老路;重复成套试题训练;重复迷信名校资料;重复个人喜好方向
1、二轮复习如果还是按一轮复习进行讲解,学生知识无法形成系统化;
2、不进行筛选试题,用成套的试题进行训练,对学生就没有针对性训练;
3、名校资料最好未必是适合非示范性高中学校的学生;
4、每个教师都有自己的优势,都有自己的喜好的知识与试题、解法,不能凭此确定复习方向,也不要小题大做,大题小做,而要注重课标的要求与方向,最好的例题是高考真题。
篇4:高三数学高效复习策略
复习之初,先定方向
从近年来的高考试题看,显然不要求每个学生都达到“深”度。因此复习时要注意根据自身的实际情况有所取舍,譬如只参加高考的同学就没有必要去学习柯西不等式、排序不等式等竞赛内容,也没有必要花过多的精力在不等式的证明上,而对比较大小的基本方法、初等不等式的解法、基本不等式的应用上则要力求掌握。
什么是基本的、必须要掌握的呢?有一个比较简单的方法来确认,就是看教材的目录。比如从不等式这一章教材目录上看,不等式的性质是基础;不等式的解法是重点(一元二次不等式的解法则是重中之重);对基本不等式则需思考:何为“基本”?在数学中如何体现出来;而不等式的证明仅是供学有余力的同学选用,这样在复习时方向就明确了,有利于合理分配时间与精力。我们还可以将上述看目录的方法延伸到整个教材,来看章节之间的联系,体会数学知识的内在联系。
学会梳理、形成能力
仍以不等式为例。
1.追根溯源,梳理知识我们可以从溯源开始,即知识是如何发现、发生、发展与其他知识之间的关系如何。比较准则是不等式知识的源头,很多问题最后都会归于比较准则。如下例:
例1:比较 |a+b|/1+|a+b|与|a|/1+|a|+ |b|/1+|b|的大小
由比较准则可知:a>b,c>0→ac>bc(不等式性质3),在上述基础上可知:若a>b>0,m>0→am>bm→ab+am>ab+bm→b+m/a+m>b/a(两边同时乘1/a(a+m))因为:|a+b|≤|a|+|b|→|a+b|/1+|a+b| ≤|a|+|b|/1+|a|+|b|=|a|/1+|a|+|b| + |b|/1+|a|+|b|≤|a|/1+|a| + |b|/1+|b|
因此|a+b|/1+|a+b|≤|a|/1+|a| + |b|/1+|b|
从上述过程可以发现,复杂、未知的数学问题总是可以通过不断的转化,回归到基本的问题。学习数学很大程度上就是要培养这种不断转化的能力,如果能将一些常用的结论或常见类型问题模型化,则将提高转化的能力,缩短转化的思维链。而每次解决一个问题时适时地整理问题的来龙去脉,理清问题解决的逻辑过程会有助于加速转化能力的形成。同时要注意不要局限于题目本身,还要注意它与其他知识的联系。如在性质3的基础上还有,若a.>b>0→0<1/a<1/b(倒数性质),在此基础上可以进一步研究反比例函数的单调性,分式型函数的单调性问题等等。
2.多角度审视,追根溯源是纵向的梳理知识发展的逻辑过程,多角度审视则是横向联系努力联想,使知识间互相联系、互相支持,对加深知识的理解很有好处。如:
例2:已知:a,b∈R+,ab=a+b+3,求ab的取值范围。可以从四个视角解决问题。视角一:从基本不等式入手;视角二:构造定值运用基本不等式;视角三:构造方程;视角四:转化为函数问题。不难发现,求变量范围问题基本的途径是通过不等式(基本不等式或解关于此变量的不等式)或运用函数的单调性。从而我们找到了解决范围问题通性、通法。
3.关注数学思想,数学文化的核心内涵是数学思想,数学方法。数学思想无处不在,如:
例3:。集合A={x|1≤2x2-3ax+a2-a≤2}的子集恰有2个,求实数a的取值范围。
解:由二次函数图像可知y=2x2-3ax+a2-a恰与直线y=2有一个交点,即与直线相切。
即△=9a2-8(a2-a-2)=a2+8a+16≤0→a=4
将一个解不等式组的问题转化为函数图像与直线交点的问题,即向函数问题转化,根据图像又可以转化为方程问题。
管理好自己的心理健康,对生活、学习充满信心、积极乐观面对各种挑战。在数学学习上不畏难、不怕烦,敢于计算、善于思索。如有同学一算就错,特别怕计算总想走捷径,时间长了面对计算问题就有了心理阴影。这些同学应该通过有意识地仔细耐心地计算逐渐提高计算能力,建立起对计算的信心。
睡前、饭后不做数学
管理好自己的时间,要观察自己一天中什么时间做数学效率最高。一般来说,睡觉前不做数学,影响睡眠质量,饭后不做数学,影响健康,要挑选相对安静、整块的时间做数学2小时左右。面对难题,不打持久战,适时向老师、同学求助,并及时总结失败的原因。
有意识改正“坏习惯”
管理好自己的习惯。在高三复习过程中要观察自己哪些习惯是不好的,并有意识去改正。如有同学做作业喜欢拖拉、导致经常熬夜赶作业;有的喜欢换参考书,每一本参考书都做一点,没有一本做完;有同学上课不听、课后拼命找家教上补习班;有的人做数学常常漏看条件,做了很长时间才发现少看了条件。凡此种种都是一些不好的习惯,要有意识地去调整。
篇5:高三数学高效复习策略
第一、二轮高考复习之后,学生明白了知识的概念,初步构成了知识网络,具有一定的思维能力。如何通过最后三个月的复习提升学生的数学学科核心素养,提高学生应用数学知识解决问题的能力呢?笔者有以下建议。
分类整理,找提升点。教师应该把时间花在课前,整理以往测试、模块复习时薄弱的知识点,精心编制查漏补缺复习题。应根据难度进行分类,对容易题采用“一题一点”即一个题目带一个知识点的方式进行限时训练;对中档题采取横向扩域的方法,特别是定理、性质、公式,要让学生知其源、明其理、知其用;对难题和典型题,需要在课堂中讲清、讲透,从而纵向加深,重点是思想方法的融合。教师讲解需注意“练在讲之前、讲在关键处”,根据学情、突出共性,归纳越准确、越细致、越深刻,针对性就越强,学生收获就越大。
周密规划,深度分析。最后100天左右的时间,需要填充的内容不能再像之前复习一样分章节和模块推进,而要打破章节,采用大单元教学形式,将数学思想方法嵌入其中,加强模块知识间的交叉综合,以及跨学科知识的融合,体现知识的整体性与创新性。笔者不建议高频率地进行模拟卷测试,两周开展一次综合测试即可,每次测试后要深度分析,把准脉络,根据学生知识掌握情况制定细目表,为下一次综合测试提供参考。假若只是让学生校对答案、然后全卷讲评,这样囫囵吞枣,只能是会的题做了千百遍,不会的题还是不会,不但提升不了学生能力反而浪费时间,增加学生焦虑感。
回归课本,真题再现。最后三个月的复习要立足课本,把课本例题和习题分题型、知识点整合,让学生追本溯源,把知识进行整理成思维导图,以及知识点间的迁移。高考真题再现并不是把高考原卷印发给学生让学生做,建议把高考真题分类,对应课本,回归知识点加以巩固。不仅仅让学生明白怎么做,更重要的是让学生明白为什么这样做,还能如何做。学校或教师若能自主命制相同难度和考查能力的题目当作业,效果更佳。
掌握技巧规范答题。考场中应试的四大法宝:“答题顺序、答题时间、考试心态、答题技巧”,总宗旨是“先易后难、分层达标”。容易题要先做,除了保证得分之外更有利于建立积极心态。难题要巧做,教师根据生情、学生根据目标“有的放矢”,不宜“贪多求满”,需有“舍得”精神。
在高考复习中,除了知识的理解应用之外,还应注意答题规范和工整书写。教师在课堂讲解时应把学生解答时书写不全的扣分情况展现给学生,教师要经常板书正确的解答过程,让学生明白书写的逻辑关系。最后三个月的复习也是心理辅导的最佳时期,各科教师都应该营造和谐舒缓的氛围,鼓励师生间多交流,多一点表扬鼓励,多一点情绪赋能。
高三最后一个学期,一般学校会采取三轮复习,如果把高考视为参考的水平面,那么,一轮复习要“仰视”,横向铺垫基础知识;二轮复习要“俯视”,纵向挖伸拓展思维;三轮复习要“平视”,最后三个月应追本溯源,更注重思想方法,更应该耕深于课本、浅出于课堂,从基础出发,融会贯通,提高学生的数学学科核心素养。
篇6:高三数学高效复习策略
高三第一轮复习一般以知识、技能、方法的逐点扫描和梳理为主。通过第一轮复习,学生大都能掌握基本概念的性质、定理及其一般应用。但知识较为零散,综合应用存在较大的问题,因此第二轮复习的首要任务是把整个高中基础知识有机地结合在一起,构建出高中数学知识的“树形图”。同时第二轮复习承上启下,是促进知识灵活运用的关键时期,是促进学生素质、能力发展的关键时期,因而对讲、练、检测要求较高。如何才能在第二轮的复习中提高复习效率,取得满意效果呢?
一、抓《考试说明》与信息研究
第二轮复习中,不可能再面面俱到。要在复习中做到既有针对性又避免做无用功,既减轻学生负担,又提高复习效率,就必须认真研究《考试说明》,吃透精神实质,抓住考试内容和能力要求,同时还应关注近三年的高考试题以及对试题的评价报告,捕捉高考信息,吸收新课中的新思想、新理念,从而转化为课堂教学的具体内容,使复习有的放矢,事半功倍。
二、突出对课本基础知识的再挖掘
近几年高考数学试题坚持新题不难,难题不怪的命题方向。强调对通性通法的考查,并且一些高考试题能在课本中找到“原型”。尽管剩下的复习时间不多,但仍要注意回归课本,只有透彻理解课本例题,习题所涵盖的数学知识和解题方法,才能以不变应万变。当然回归课本不是死记硬背,而是抓纲悟本,引导学生对着课本目录回忆和梳理知识,对典型问题进行引申,推广发挥其应有的作用。
三、抓好专题复习,领会数学思想
高考数学第二轮复习重在知识和方法专题的复习。在知识专题复习中可以进一步巩固第一轮复习的成果,加强各知识板块的综合。尤其注意知识的交叉点和结合点,进行必要的针对性专题复习。例如以函数为主干,不等式、导数、方程、数列与函数的综合;再如平面向量与三角函数,平向向量与解析几何的综合等。在复习中,以这些重点知识的综合性题目为载体,渗透对数学思想和方法的系统介绍。专题复习对备课的要求很高,通过对例习题的精选、精讲、精练,力求归纳出知识模块形成体系,同时也要能提炼出数学思想层次的东西。例如对分式、根式、绝对值的处理、角度、线段长度的处理、方程、不等式恒成问题的研究。大小比较二元函数问题、递推公式的应用、图象的应用、解析几何中对称问题、轨迹问题等,在教师的指导下,学生对知识的再现、整合过程中,可以伴随一系列思维活动,如分析、综合、比较、类比、归纳、概括等,这一过程也是逻辑思维综合训练的过程。经过这一过程可以加深对知识的理解,强化记忆,同时也可以发现问题,纠正错误,查漏补缺,学生对解题规律的探究、发现、归纳和应用过程中掌握数学基本方法,达到举一反三的目的,才能将所学知识转化为解决问题的能力。
四、抓规范训练,提高解题速度与准确率
计算能力是高考四大能力之一,也是学生的薄弱环节之一。第二轮复习要通过让学生动手、动脑做题,培养学生正确应用知识、寻求合理、简捷的运算途径的能力,还要能根据要求对数字进行估算和近似的计算,在解题中提高计算能力。每次练习要求学生做到熟练、准确、简捷、迅速。选择题、填空题在考试中比例较大,分值较高,对高考成绩占有举足轻重的地位,其正确率和速度都直接影响高考成绩。因此,在第二轮复习中有必要强化对解答选择题、填空题的方法指导,即如何利用排除法、特例法、估算法、图象法、递推验证等方法准确、快速地解选择题和填空题。在这一阶段,除正常布置每天作业外,每周安排一次以选择题、填空题为主的课堂定时练习和一次综合练习,并做到及时评讲。高考复习学生需要大量练习,为了赶时间,他们往往只注重解题思路的寻找,不按规定格式解题,导出会而不对,对而不全。因此,作为教师要以身作则,严格要求,可通过对试卷的分析、评讲、示范表述给出评分标准,引导学生规范答题踩准得分点,减少过失性失分。
总之,高三复习夯实基础是根本,掌握规律是方向,提高能力是关键。无论是参加全国统考还是各省自主命题考试,我们都须“以纲为纲”,明晰考试要求,以不变应万变,才可能利用有限时间,取得满意效果。
篇7:高三数学高效复习策略
二轮数学复习中,要注意六大策略:
一、注意基础知识的整合、巩固。二轮复习要注意回归课本,课本是考试内容的载体,是高考命题的依据。浓缩课本知识,进一步夯实基础,提高解题的准确性和速度
二、查漏补缺,保强攻弱。在二轮复习中,对自己的薄弱环节要加强学习,平衡发展,加强各章节知识之间的横向联系,针对“一模”考试中的问题要很好的解决,根据自己的实际情况作出合理的安排。
三、提高运算能力,规范解答过程。在高考中运算占很大比例,一定要重视运算技巧粗中有细,提高运算准确性和速度,同时,要规范解答过程及书写。
四、强化数学思维,构建知识体系。同学们在听课时注意把重点要放到理解老师对问题思路的分析以及解法的归纳总结,以便于同学们在刷题时做到思路清晰,迅速准确。
五、解题快慢结合,改错反思。审题制定解题方案要慢,不要急于解题,要适当地选择好的方案,一旦方法选定,解题动作要快要自信。平时要注意积累错误,特别是易错点,寻找错误原因,及时总结。
六、重视和加强选择题的训练和研究。对于选择题不但要答案正确,还要优化解题过程,提高速度。灵活运用特值法、排除法、数形结合法、估算法等。
一轮看功夫,二轮学技巧,三轮振士气。希望同学们惜时奋发,不负韶华,勇摘高考成绩桂冠!
篇8:高三数学高效复习策略
长期以来大规模的训练是高三同学学习的传统模式,但综观高三同学的现状及考试结果,总觉得付出和结果的比例不尽如人意。那么,高三同学应如何在较短时间内进行第一轮复习呢?
一、回归课本,注重基础,重视预习
回归课本,自已先对知识点进行梳理,把教材上的每一个例题、习题再做一遍,确保基本概念、公式等牢固掌握,要扎扎实实,不要盲目攀高,欲速则不达。
二、提高课堂听课效率,勤动手,多动脑
高三的课只有两种形式:复习课和评讲课,到高三所有课都进入复习阶段,通过复习,学生要能检测出知道什么,哪些还不知道,哪些还不会,因此在复习课之前一定要有自已的思考,听课的目的就明确了。现在学生手中都会有一种复习资料,在老师讲课之前,要把例题做一遍,做题中发现的难点,就是听课的重点;对预习中遇到的没有掌握好的有关的旧知识,可进行补缺,以减少听课过程中的困难;有助于提高思维能力,自己理解了的东西与老师的讲解进行比较、分析即可提高自己思维水平;体会分析问题的思路和解决问题的思想方法,坚持下去,就一定能举一反三,提高思维和解决问题的能力。此外还要特别注意老师讲课中的提示。作好笔记,笔记不是记录而是将上述听课中的要点,思维方法等做出简单扼要的记录,以便复习,消化,思考。例习题的解答过程留在课后去完成,没记的地方留点空余的地方,以备自己的感悟。
三、以“错”纠错,查漏补缺
这里说的“错”,是指把平时做作业中的错误收集起来。高三复习,各类试题要做几十套,甚至上百套。如果平时做题出错较多,就只需在试卷上把错题做上标记,在旁边写上评析,然后把试卷保存好,每过一段时间,就把“错题笔记”或标记错题的试卷看一看。在看参考书时,也可以把精彩之处或做错的题目做上标记,以后再看这本书时就会有所侧重。查漏补缺的过程就是反思的过程。除了把不同的问题弄懂以外,还要学会“举一反三”,及时归纳。每次订正试卷或作业时,在做错的试题旁边要写明做错的原因大致可分为以下几类:
1、找不到解题着手点。
2、概念不清、似懂非懂。
3、概念或原理的应用有问题。
4、知识点之间的迁移和综合有问题。
5、情景设计看不懂。
6、不熟练,时间不够。
7、粗心,或算错。
以上方法经过一个阶段自查,建立一份个人补差档案。通过边查边改,重复犯的错误一定会越来越少。同时,随着自我认识的不断完善,也有利于考试时增强自信心,消除紧张情绪。
四、做好每一章知识的系统总结
1、做好每一天的复习。上完课的当天,必须做好当天的复习。复习的有效方法不是一遍遍地看书或笔记,而是采取回忆式的复习:先把书,笔记合起来回忆上课老师讲的内容,例题:分析问题的思路、方法等(也可边想边在草稿本上写一写)尽量想得完整些。然后打开笔记与书本,对照一下还有哪些没记清的,把它补起来,就使得当天上课内容巩固下来,同时也就检查了当天课堂听课的效果如何,也为改进听课方法及提高听课效果提出必要的改进措施。我们可以简记为“一分钟的回忆法”。
2、做好单元复习。学习一个单元后应进行阶段复习,复习方法也同及时复习一样,采取回忆式复习,而后与书、笔记相对照,使其内容完善,而后应做好单元小节。
3、做好单元小结。单元小结内容应包括以下部分。
(1)本单元(章)的知识网络;
(2)本章的基本思想与方法(应以典型例题形式将其表达出来);
(3)自我体会:对本章内,自己做错的典型问题应有记载,分析其原因及正确答案,应记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。
五、适量训练是学好数学的保证
学好数学要做大量的题,但反过来做了大量的题,数学不一定好,“不要以做题多少论英雄”,因此要提高解题的效率,做题的目的在于检查你学的知识,方法是否掌握得很好。如果你掌握得不准,甚至有偏差,那么多做题的结果,反而巩固了你的缺欠,因此,要在准确地把握住基本知识和方法的基础上做一定量的练习是必要的。
1、要有针对性地做题,典型的题目,应该规范地完成,同时还应了解自己,有选择地做一些课外的题;
2、要循序渐进,由易到难,要对做过了典型题目有一定的体会和变通,即按“学、练、思、结”程序对待典型的问题,这样做能起到事半功倍的效果。
3、是无论是作业还是测验,都应把准确性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,也是学好数学的重要问题。
4、尽管复习时间紧张,但我们仍然要注意回归课本。回归课本,不是要强记题型、死背结论,而是要抓纲悟本,对着课本目录回忆和梳理知识,把重点放在掌握例题涵盖的知识及解题方法上,选择一些针对性极强的题目进行强化训练、复习才有实效。
5、独立思考是数学的灵魂,遇到不懂或困难的问题时,要坚持独立思考,不轻易问人,不要一遇到不会的东西就马上去问别人,自己不动脑子,专门依赖别人,而是要自己先认真地思考一下,依靠自己的努力克服其中的某些困难,经过很大的努力仍不能解决的问题,再虚心请教别人,请教时,不要把问题问得太透。学会提出问题,提出问题往往比解决问题更难,而且也更重要。
六、养成良好的解题习惯
如仔细阅读题目,看清数字,规范解题格式,部分同学自己感觉很好,平时做题只是写个答案,不注重解题过程,书写不规范,在正规考试中即使答案对了,由于过程不完整被扣分较多。部分同学平时学习过程中自信心不足,做作业时免不了互相对答案,也不认真找出错误原因并加以改正。这些同学到了考场上常会出现心理性错误,导致“会而不对”,或是为了保证正确率,反复验算,浪费很多时间,影响整体得分。这些问题都很难在短时间得以解决,必须在平时下功夫努力改正。“会而不对”是高三数学学习的大忌,常见的有审题失误、计算错误等,平时都以为是粗心,其实这是一种不良的学习习惯,必须在第一轮复习中逐步克服,否则,后患无穷。可结合平时解题中存在的具体问题,逐题找出原因,看其是行为习惯方面的原因,还是知识方面的缺陷,再有针对性加以解决。必要时作些记录,也就是错题本,每位学生必备的,以便以后查询。
七、分析试卷:将存在问题分类
每次考试结束试卷发下来,要认真分析得失,总结经验教训。特别是将试卷中出现的错误进行分类,可如下分类:
第一类问题———遗憾之错。就是分明会做,反而做错了的题;比如说,“审题之错”是由于审题出现失误,看错数字等造成的;“计算之错”是由于计算出现差错造成的;“抄写之错”是在草稿纸上做对了,往试卷上一抄就写错了、漏掉了;“表达之错”是自己答案正确但与题目要求的表达不一致,如角的单位混用等。出现这类问题是考试后最后悔的事情。
消除遗憾要消除遗憾必须弄清遗憾的原因,然后找出解决问题的办法,如“审题之错”,是否出在急于求成?可采取“一慢一快”战术,即审题要慢、答题要快。“计算错误”,是否由于草稿纸用得太乱等。建议将草稿纸对折分块,每一块上演算一道题,有序排列便于回头查找。 “抄写之错”,可以用检查程序予以解决。“表达之错”,注意表达的规范性,平时作业就严格按照规范书写表达,学习高考评分标准写出必要的步骤,并严格按着题目要求规范回答问题。
第二类问题———似非之错。记忆的不准确,理解的不够透彻,应用得不够自如;回答不严密、不完整;第一遍做对了,一改反而改错了,或第一遍做错了,后来又改对了;一道题做到一半做不下去了等等。弄懂似非“似是而非”是自己记忆不牢、理解不深、思路不清、运用不活的内容。这表明你的数学基础不牢固,一定要突出重点,夯实基础。你要建立各部分内容的知识网络;全面、准确地把握概念,在理解的基础上加强记忆;加强对易错、易混知识的梳理;要多角度、多方位地去理解问题的实质;体会数学思想和解题的方法;当然数学的学习要有一定题量的积累,才能达到举一反三、运用自如的水平。
第三类问题———无为之错。由于不会,因而答错了或猜的,或者根本没有答。这是无思路、不理解,更谈不上应用的问题。力争有为在高三复习的第一轮中,不要做太难的题和综合性很强的题目,因为综合题大多是由几道基础题组成的,只有夯实了基础,做熟了基础题目,掌握了基本思想和方法,综合题才能迎刃而解。在高三复习时间较紧的情况下,第一阶段要有所为,有所不为,但平时考试和老师留的经过筛选的题目要会做,要做好。
篇9:高三数学高效复习策略
高三数学复习面广量大,不少学生感到既畏惧,又无从下手。同学们如何才能提高复习的针对性和实效性?我认为,应切实有效地做好如下几点。这里要向同学们推荐一个办法——在上完课的当天不防做好当天的复习,也就是“一分钟的回忆法”,这样可以起到事半功倍的效果。
课后一分钟回忆及时复习
数学的基本概念、定义、公式,数学知识点的联系,基本的数学解题思路与方法,是第一轮复习的重中之重。回归课本,先对知识点进行梳理,把教材上的每一个例题、习题再做一遍,确保基本概念、公式等牢固掌握,要扎扎实实,不要盲目攀高,以免欲速则不达。复习课的容量大、内容多、时间紧。要提高复习效率,必须使自己的思维与老师的思维同步。而预习则是达到这一目的的重要途径。没有预习,听老师讲课,就抓不住老师讲的重点;而预习了之后,再听老师讲课,就会在记忆上对老师讲的内容有所取舍,把重点放在自己还未掌握的内容上,从而提高复习效率。同时预习还有利于培养自己的自学能力。
上完课的当天,必须做好当天的复习。复习的有效方法不是一遍遍地看书或笔记,而是采取回忆式的复习:先把书,笔记合起来回忆上课老师讲的内容,例题;分析问题的思路、方法等 ( 也可边想边在草稿本上写一写 ) 尽量想得完整些。然后打开笔记与书本,对照一下还有哪些没记清的,赶紧补完,这样不仅能把当天上课内容巩固下来,而且也能检查当天课堂听课的效果如何,同时也可改进听课方法及提高听课效果。我们可以简记为“一分钟的回忆法”。
避免“会而不对”的错误习惯
解题时应仔细阅读题目,看清数字,规范解题格式,养成良好解题习惯。部分同学 ( 尤其是脑子比较好的同学 ) 自我感觉很好,平时做题只是写个答案,不注重解题过程,书写不规范。但在正规考试中即使答案对了,由于过程不完整而扣分较多。还有一部分同学平时学习过程中自信心不足,做作业时免不了互相对答案,也不认真找出错误原因并加以改正。这些同学到了考场上常会出现心理性错误,导致“会而不对”,或是为了保证正确率,反复验算,费时费力,影响整体得分。这些问题很难在短时间得以解决,必须在平时养成良好解题习惯。
“会而不对”是高三数学学习的大忌,常见的有审题失误、计算错误等,平时都以为是粗心,其实这是一种不良的学习习惯,必须在第一轮复习中逐步克服,否则,后患无穷。可结合平时解题中存在的具体问题,逐题找出原因,看其到底是行为习惯方面的原因,还是知识方面的缺陷,再有针对性地加以解决。必要时要作些记录,也就是“错题笔记”。每过一段时间,就把“错题笔记”或标记错题的试卷复习一遍。在看参考书时,也可以把精彩之处或做错的题目做上标记,以后再看这本书时就会有所侧重。
重视“一题多解”“多题同解”
学好数学要做大量的习题,但做了大量的题,数学都未必好,为何会出现这种反差呢?究其原因,是片面追求做题数量,而没有发挥做题的效果。进入复习阶段后,大量的试题铺天盖地而来,这时我们一定要保持清醒的头脑,要有所为,有所不为。学习数学不做题肯定不对,但不能陷入题海不能自拔,要充分发挥教材在知识形成过程中的作用,注意典型例题的示范价值,能够举一反三,重视“一题多解”和“多题同解”,做到以一题带一片。要有针对性地做题,典型的题型,应该规范完成,同时还应了解自己,有选择地做一些课外的题;要循序渐进,由易到难,对做过的典型题型有一定的体会和变通,即按“学、练、思、结”程序对待典型的问题,这样做才能起到事半功倍的效果。
另外,独立思考是数学的灵魂,遇到不懂或困难的问题时,要坚持独立思考,不要一遇到不会的习题就马上去问别人,自己不动脑子,而应该要自己先认真地思考一下,尽量依靠自己的努力克服其中的困难。如经过努力仍不能解决的问题,再虚心请教别人,请教时,不要把问题问得太透。应学会提出问题,提出问题往往比解决问题更难,而且也更重要。
弄清自己错在哪里
每次试卷发下来,要认真分析得失,总结经验教训,尤其是将试卷中出现的错误进行分类,可如下分类:
第一类问题——遗憾之错。就是分明会做,反而做错了的题。比如说,“审题之错”是由于审题出现失误,看错数字等造成的;“计算之错”是由于计算出现差错造成的;“抄写之错”是在草稿纸上做对了,往试卷上一抄就写错了、漏掉了;“表达之错”是自己答案正确但与题目要求的表达不一致,如角的单位混用等。出现这类问题是最后悔的事情。要消除遗憾必须弄清遗憾的原因,然后找出解决问题的办法,如“审题之错”,是否出在急于求成?可采取“一慢一快”战术,即审题要慢、答题要快。 “计算错误”,是否由于草稿纸用得太乱等。建议将草稿纸对折分块,每一块上演算一道题,有序排列便于回头查找。 “抄写之错”,可以用检查程序予以解决。 “表达之错”,注意表达的规范性,平时作业就严格按照规范书写表达,学习高考评分标准写出必要的步骤,并严格按着题目要求规范回答问题。
第二类问题——似非之错。记忆不准确,理解不透彻,应用不自如;回答不严密、不完整;第一遍做对了,一改反而改错了,或第一遍做错了,后来又改对了;一道题做到一半做不下去了等等。 “似是而非”,就是自己记忆不牢、理解不深、思路不清、运用不活的内容。这表明你的数学基础不牢固,一定要突出重点,夯实基础。你要建立各部分内容的知识网络;全面、准确地把握概念,在理解的基础上加强记忆;加强对易错、易混知识的梳理;要多角度、多方位地去理解问题的实质;体会数学思想和解题的方法;当然数学的学习要有一定题量的积累,才能达到举一反三、运用自如的水平。
第三类问题——无为之错。由于不会,因而答错了或猜的,或者根本没有答。这是无思路、不理解,更谈不上应用的问题。在高三复习的第一轮中,不要做太难的题和综合性很强的题目,因为综合题大多是由几道基础题组成的,只有夯实了基础,做熟了基础题目,掌握了基本思想和方法,综合题才能迎刃而解。在高三复习时间较紧的情况下,第一阶段要有所为,有所不为,但平时考试和老师留的经过筛选的题目要会做,要做好。
篇10:高三数学高效复习策略
高三数学一轮复习策略 高三考生不得不看
高三数学复习,面广量大知识点多,不少学生感到既枯燥无趣,又不能灵活应用。下面小编就为大家介绍高三数学一轮复习策略,仅供大家参考。
高三数学一轮复习策略:注重基础
高三数学的基础知识理解与掌握,基本的数学解题思路分析与数学方法的运用,是高三数学第一轮复习的重中之重。对知识点进行梳理,形成完整的知识体系,确保基本概念、公式等牢固掌握。要扎扎实实,对每个知识点都要理解透彻,明确它们要求以及与其他知识之间的联系。复习课的容量大、内容多、时间紧。
要提高高三数学复习效率,必须使自己的思维与老师的思维同步。而预习则是达到这一目的的重要途径,要做到“两先两后”,即先预习后听课,先复习后作业。以提高听课的主动性,减少听课的盲目性。而预习了之后,再听老师讲课,就会在记忆上对老师讲的内容有所取舍,把重点放在自己还未掌握的内容上,从而提高复习效率。预习还可以培养自己的自学能力。
高三数学一轮复习策略:勤动手,多动脑
高三数学的课一般有两种形式:复习课和评讲课,到高三所有课都进入复习阶段,通过复习,学生要能检测出知道什么,哪些还不知道,哪些还不会,因此在复习课之前一定要弄清那些已懂那些还不懂,增强听课的主动性。现在学生手中都会有一种复习资料,在老师讲课之前,要把例题做一遍,做题中发现的难点,就是听课的重点;对预习中遇到的没有掌握好的有关的旧知识,可进行补缺,以减少听课过程中的困难。
有助于提高高三数学思维能力,自己理解了的东西与老师的讲解进行比较、分析即可提高自己思维水平;体会分析问题的思路和解决问题的思想方法,坚持下去,就一定能举一反三,提高思维和解决问题的能力。此外还要作好笔记,笔记不是记录而是将上述听课中的要点,思维方法等作出简单扼要的记录,以便复习,消化,思考。三建好错题档案,做好查漏补缺。
高三数学一轮复习策略:强化训练
学好高三数学要做大量的题,但反过来做了大量的题,数学不一定好,因此要提高解题的效率,做题的目的在于检查你学的知识,方法是否掌握得很好。如果你掌握得不准,甚至有偏差,那么多做题的结果,反而巩固了你的缺欠,因此,要在准确地把握住基本知识和方法的基础上做一定量的定式训练是必要的。
1、要有针对性地做高三数学题,典型的题目,应该规范地完成,同时还应了解自己,有选择地做一些课外的题,但一定要做到定时定量;
2、要循序渐进,由易到难,要对做过了典型题目有一定的体会和变通,即按“学、练、思、结”程序对待典型的问题,这样做能起到事半功倍的效果。
3、是无论是作业还是测验,都应把准确性放在第一位,而不是一味地去追求速度或技巧。
篇11:高三数学高效复习策略
高三是紧张且充满挑战的一年。新高三生该如何在开学阶段就HOLD住数学科目,当前数学复习的重点是什么?听听上外西外外国语学校高中部数学教研组长陆金中老师怎么说吧。
[学法指南]
开学数学四步走
一、梳理基础知识
陆金中表示,以前学过的知识要全面掌握和理解,在心中建立知识网络。打好基础,首先须重视数学基本概念、基本定理(公式、法则)的复习,在理解上下功夫,整体把握数学知识。这部分内容的复习要做到不打开课本,能选择适当途径将它们回忆出,它们之间的脉络框图,能在自己大脑中勾画出来。如函数可以利用框图的形式由粗到细进行回忆。
概念要抓住关键及注意点,公式及法则要理解它们的来源,要理解公式法则中每一个字母的含义,即它们分别表示什么,这样才能正确使用公式。在平时学习时,不要满足于得到答案就行了,而其他的方法却不去研究,尤其课堂上,老师通过一个典型的例题介绍处理这种问题有哪些方法,可以从哪些不同的角度来思考问题。方法没有好坏之分,只是在解决具体的问题时才有优劣之分,更重要的是要关注通性、通法的掌握,而不是仅关注此问题特殊的、简单的方法。
二、重视“三基”
高考(微博)数学学科的考试既考查中学数学的基础知识和方法,又考查考生进人高校继续学习的潜能。因此,既突出对基础知识、基本技能、基本数学思想方法的考察,又强调能力立意,以数学的基础知识为载体,考察学生的数学能力,同时注意考察学生的创新能力。
陆金中强调,学生在高三的学习过程中要注重“三基”。首先,是基础知识。学生要注重基础知识的积累,能将基础知识全面的掌握和理解。其次,是基本方法,也就是“通法”,最基本的解题方法,以及书本和考纲要求学生掌握的基本方法。最后,就是基本能力。
陆金中指出,数学的基本能力包括思维能力、运算能力、空间想象能力及分析和解决问题的能力等。高三生在解题过程中一定要思维缜密、有理有据,步骤完整。在立体几何部分,解题时要多运用数理结合、数的运算,要有耐心。
三、注重学习策略
陆金中强调学生一定要学会自学考纲,即注重课前复习,看考纲数学要求,做到心中有数。而且在学习数学时,一定要不断巩固,适当重复,举一反三。此外,做题后的反思也很重要,学生要有意识地反思题目考察的知识点,考察的数学方法、数学思想,以及易错的点是什么。切忌钻难、怪、偏题,花无谓的时间,切忌题海战,要提高学习效率。
四、调整好学习心态
陆金中还表示,在整个高三数学的学习上,良好的学习心态也尤其重要。学生要能主动学习,即让自己的学习进度、复习进度都能赶在老师授课之前;并且还能在老师安排学习计划的基础上,制订好一份自己的计划,整理好自己的学习时间和进度,按照自己的进度和目标实施。此外,还要注重和同学间的合作学习,不能单打独斗,要多和同学探讨。在心态上,学生一定要对自己的学习能力、状态、知识水平、学习进度的实施等持有正确的评价。
[学习攻略]
科学安排好学习时间
复习时间的安排有长期、中期和短期。长期要与老师的安排大体一致,即整体进度跟着老师走。近期安排就是以章为单位或一周为单位,可以安排每天做什么,操作性要强。计划要结合老师的近期安排,跟着老师的节奏并在完成老师布置的作业后,针对自己的薄弱环节重点突破。第一轮复习务必要把基本概念、解决一类问题的基本方法等扎实掌握。
中期安排就数学而言,主要抓好几大分支:函数、三角、数列、不等式等以及解析几何、立体几何。其中函数(含不等式)、数列、解析几何是重中之重。第一轮复习时要注意各分支之间的有机结合,综合程度要根据自己的实际情况而定,普通中学的学生对综合程度高的难题,可以暂时回避,先把基础内容掌握好。立体几何近年上海卷因两种教材并行考查相对容易。
要提高自身的学习效率
首先,学生要限时做好作业。给自己规定时间,像考试一样“进入状态”,同样遵循先易后难的原则,遇到难题认真思考,但一时做不出要学会“放弃”。提倡“做后满分”就是对做错的题目要认真订正,不妨准备一本错题集,记下错误原因,过段时间再回顾,争取不犯同样错误。
其次,要减少低级错误。这是有些同学分数上不去的主要原因,大都由审题失误、计算失误,考试时还会有紧张等心理因素引起。这些问题容易被以“粗心”的表象所掩盖,实际上经常的粗心就是一种不好的习惯,必须充分认识到它的危害性,并努力加以克服。
提高分析和解决问题的能力
学生要多做练习,但不能仅满足于得到问题的答案,做过的类似问题要放在一起及时比较总结,以更好指导自己以后的解题,再在应用的过程中不断调整,这样可以“事半功倍”。针对高三考试多的特点,建议同学每次考后能针对性进行分析。分析考试中所暴露的学习盲点,对于下一阶段的学习和备考非常重要。在考后分析中,要结合错题本,及时将问题明确化、题型化。
分析后要制订具体的行动计划。找出自己的学习问题后,只有制订出具体行动计划,所作的分析才是切实有效的。针对每个问题给出具体的学习安排和调整,一定要做到问题和方案清晰量化。
[专家建议]
优等生:要学会提炼数学思想
陆金中提醒优等生在学数学过程中,不仅要掌握以上的知识和方法,更要注重归纳数学思想,即把学习上升到“思想”的层次。多做好题、名题,比如书上的例题、高考经典好题、复习材料的例题等,要在做题过程中,从中体会、提炼数学思想,如转化、类比思想等,这些思想在许多题目中都有广泛的应用。
篇12:高三数学高效复习策略
高三数学二轮复习策略:最常见的问题有哪些
对于高三数学这一学科来讲,二轮复习是拿分数的关键时期。下面是小编分享的高三数学二轮复习策略,希望能对大家有所帮助。
高三数学二轮复习问题一
问题一:有的学生在高三数学第一轮复习中学得很辛苦,拿模拟试卷一考却不见分数,这是为什么?
在高三数学一轮复习中,复习重在基础知识的回顾,目的是让知识结构中不存在盲区。采用的复习方法是“以课本为本”。在高三数学一轮复习结束后,知识点在我们的意识形态中还是孤立的,没有通过知识点之间的内在关系联系在一起。另外,由于知识点多、杂,难以让我们的学生一下子记住和掌握,更不用说灵活地运用。而我们的模拟考试往往是接近于“实战”,重在考察学生知识点的全面性和知识点的关联性,以及基本的方法和基本技能。除此之外,有的学校还特意将一轮模拟考试的难度稍微提高一点,目的是让大家有紧迫感,因此,在高三数学一模考试中见不到分数是很正常的,分数的提高主要是在高三数学二轮复习中。
高三数学二轮复习问题二
问题二:高三数学二轮复习的难度大于高三数学一轮复习,我基础不好,跟不上,该怎么办?
有很多基础差的学生在高三数学一轮复习中还勉强能跟上老师的节奏,而到了高三数学二轮复习中感觉很吃力,跟不上老师的教学节奏,每天的作业中都有很多不会做的题目。
对这部分的学生,你们所要做的是两个字“坚持”!所谓“黎明前的黑暗”就在此,保持好高三数学一轮复习中的那种状态。在学习上注重“储备学习”(所谓储备学习就是在老师上课前的内容自己先自学一遍,让自己在课堂上能够很好地跟上老师的节奏。)你们在二轮复习中要特别的注重自主超前学习,把自己不懂的地方提前发现在每天老师的讲课过程中,重视对题目的总结和归纳,不能就题论题,尽量做到“做一题通类似”。课后对于你来说相当重要,你要花大量时间在研究老师上课所讲的例题上,仔细揣摩老师所讲的数学思想、数学方法、解题技巧等等。另外,遇到自己不能搞清楚的问题一定要及时地问老师,做到“不留问题过夜”,这对你来说是很重要的。
高三数学二轮复习问题三
问题三:高三数学一轮复习过的知识点在高三数学二轮复习中记不得或者想不到运用,这该怎么办?
在高三数学一轮复习结束时,大部分的学生都有拿到题目居然不知道从哪下手这种感觉,产生这种现象的原因是大家在学习的时候没有注重将知识点“连点成线、连线成面”,知识点在你们的大脑中还是孤立的,不能够“串”起来,因此有时候会“掉线”。克服这种问题的办法其实很简单——快速阅读,把书读薄。通过快速阅读的方法能够让你在短时间内记得所有的知识点(前提是你高三数学一轮复习的很塌实),然后再通过解答题来验证知识点之间的联系,大约通过30-50道解答题的研究,你就会越来越知道知识点之间的联系了。因此对你来说,“快看点、慢研题”是你成功的法宝。
篇13:高三数学高效复习策略
高考即将开战,你准备好了吗?高考网小编为各位考生整理了一些高考复习方法,供大家参考阅读!
1、忘空集致误
由于空集是任何非空集合的真子集,因此B=空集时也满足B真属于A.解含有参数的集合问题时,要特别注意当参数在某个范围内取值时所给的集合可能是空集这种情况。
2、忽视集合元素的三性致误
集合中的元素具有确定性、无序性、互异性,集合元素的三性中互异性对解题的影响最大,特别是带有字母参数的集合,实际上就隐含着对字母参数的一些要求。
3、混淆命题的否定与否命题
命题的“否定”与命题的“否命题”是两个不同的概念,命题p的否定是否定命题所作的判断,而“否命题”是对“若p,则q”形式的命题而言,既要否定条件也要否定结论。
4、函数的单调区间理解不准致误
在研究函数问题时要时时刻刻想到“函数的图像”,学会从函数图像上去分析问题、寻找解决问题的方法.对于函数的几个不同的单调递增(减)区间,切忌使用并集,只要指明这几个区间是该函数的单调递增(减)区间即可。
5、判断函数奇偶性忽略定义域致误
判断函数的奇偶性,首先要考虑函数的定义域,一个函数具备奇偶性的必要条件是这个函数的定义域关于原点对称,如果不具备这个条件,函数一定是非奇非偶函数
6、函数零点定理使用不当致误
如果函数y=f(x)在区间[a,b]上的图像是一条连续的曲线,并且有f(a)f(b)<0,那么,函数y=f(x)在区间(a,b)内有零点,但f(a)f(b)>0时,不能否定函数y=f(x)在(a,b)内有零点.函数的零点有“变号零点”和“不变号零点”,对于“不变号零点”函数的零点定理是“无能为力”的,在解决函数的零点问题时要注意这个问题
7、导数的几何意义不明致误
函数在一点处的导数值是函数图像在该点处的切线的斜率.但在许多问题中,往往是要解决过函数图像外的一点向函数图像上引切线的问题,解决这类问题的基本思想是设出切点坐标,根据导数的几何意义写出切线方程.然后根据题目中给出的其他条件列方程(组)求解.因此解题中要分清是“在某点处的切线”,还是“过某点的切线”。
8、导数与极值关系不清致误
f′(x0)=0只是可导函数f(x)在x0处取得极值的必要条件,即必须有这个条件,但只有这个条件还不够,还要考虑是否满足f′(x)在x0两侧异号.另外,已知极值点求参数时要进行检验。
9、三角函数的单调性判断致误
对于函数y=Asin(ωx+φ)的单调性,当ω>0时,由于内层函数u=ωx+φ是单调递增的,所以该函数的单调性和y=sin x的单调性相同,故可完全按照函数y=sin x的单调区间解决;但当ω<0时,内层函数u=ωx+φ是单调递减的,此时该函数的单调性和函数y=sin x的单调性相反,就不能再按照函数y=sin x的单调性解决,一般是根据三角函数的奇偶性将内层函数的系数变为正数后再加以解决.对于带有绝对值的三角函数应该根据图像,从直观上进行判断。
10、图像变换方向把握不准致误
函数y=Asin(ωx+φ)(其中A>0,ω>0,x∈R)的图像可看作由下面的方法得到:(1)把正弦曲线上的所有点向左(当φ>0时)或向右(当φ<0时)平行移动|φ|个单位长度;(2)再把所得各点横坐标缩短(当ω>1时)或伸长(当0<ω<1时)到原来的1ω倍(纵坐标不变);(3)再把所得各点的纵坐标伸长(当A>1时)或缩短。
11、忽视零向量致误
零向量是向量中最特殊的向量,规定零向量的长度为0,其方向是任意的,零向量与任意向量都共线。它在向量中的位置正如实数中0的位置一样,但有了它容易引起一些混淆,稍微考虑不到就会出错,考生应给予足够的重视。
12、向量夹角范围不清致误
解题时要全面考虑问题.数学试题中往往隐含着一些容易被考生所忽视的因素,能不能在解题时把这些因素考虑到,是解题成功的关键,如当a·b<0时,a与b的夹角不一定为钝角,要注意θ=π的情况。
13、忽视零截距
解决有关直线的截距问题时应注意两点:一是求解时一定不要忽略截距为零这种特殊情况;二是要明确截距为零的直线不能写成截距式。因此解决这类问题时要进行分类讨论,不要漏掉截距为零时的情况。
14、忽视圆锥曲线定义中条件致误
利用椭圆、双曲线的定义解题时,要注意两种曲线的定义形式及其限制条件。如在双曲线的定义中,有两点是缺一不可的:其一,绝对值;其二,2a<|F1F2|。
如果不满足第一个条件,动点到两定点的距离之差为常数,而不是差的绝对值为常数,那么其轨迹只能是双曲线的一支。
15、误判直线与圆锥曲线位置关系
过定点的直线与双曲线的位置关系问题,基本的解决思路有两个:一是利用一元二次方程的判别式来确定,但一定要注意,利用判别式的前提是二次项系数不为零,当二次项系数为零时,直线与双曲线的渐近线平行(或重合),也就是直线与双曲线最多只有一个交点;
二是利用数形结合的思想,画出图形,根据图形判断直线和双曲线各种位置关系。在直线与圆锥曲线的位置关系中,抛物线和双曲线都有特殊情况,在解题时要注意,不要忘记其特殊性。
16、两个计数原理不清致误
分步加法计数原理与分类乘法计数原理是解决排列组合问题最基本的原理,故理解“分类用加、分步用乘”是解决排列组合问题的前提,在解题时,要分析计数对象的本质特征与形成过程,按照事件的结果来分类,按照事件的发生过程来分步,然后应用两个基本原理解决.
对于较复杂的问题既要用到分类加法计数原理,又要用到分步乘法计数原理,一般是先分类,每一类中再分步,注意分类、分步时要不重复、不遗漏,对于“至少、至多”型问题除了可以用分类方法处理外,还可以用间接法处理。
17、排列、组合不分致误
为了简化问题和表达方便,解题时应将具有实际意义的排列组合问题符号化、数学化,建立适当的模型,再应用相关知识解决.
建立模型的关键是判断所求问题是排列问题还是组合问题,其依据主要是看元素的组成有没有顺序性,有顺序性的是排列问题,无顺序性的是组合问题。
18、混淆项系数与二项式系数致误
在二项式(a+b)n的展开式中,其通项Tr+1=Crnan-rbr是指展开式的第r+1项,因此展开式中第1,2,3,…,n项的二项式系数分别是C0n,C1n,C2n,…,Cn-1n,而不是C1n,C2n,C3n,…,Cnn.而项的系数是二项式系数与其他数字因数的积。
19、循环结束判断不准致误
控制循环结构的是计数变量和累加变量的变化规律以及循环结束的条件.在解答这类题目时首先要弄清楚这两个变量的变化规律,其次要看清楚循环结束的条件,这个条件由输出要求所决定,看清楚是满足条件时结束还是不满足条件时结束。
20、条件结构对条件判断不准致误
条件结构的程序框图中对判断条件的分类是逐级进行的,其中没有遗漏也没有重复,在解题时对判断条件要仔细辨别,看清楚条件和函数的对应关系,对条件中的数值不要漏掉也不要重复了端点值。
21、复数的概念不清致误
对于复数a+bi(a,b∈R),a叫做实部,b叫做虚部;当且仅当b=0时,复数a+bi(a,b∈R)是实数a;当b≠0时,复数z=a+bi叫做虚数;当a=0且b≠0时,z=bi叫做纯虚数。
解决复数概念类试题要仔细区分以上概念差别,防止出错.另外,i2=-1是实现实数与虚数互化的桥梁,要适时进行转化,解题时极易丢掉“-”而出错。


最新文章

热门文章
