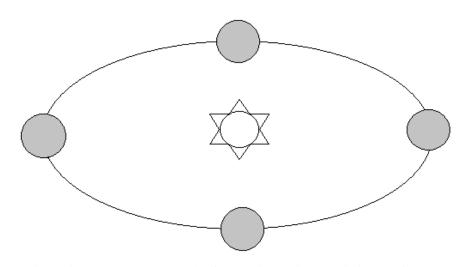
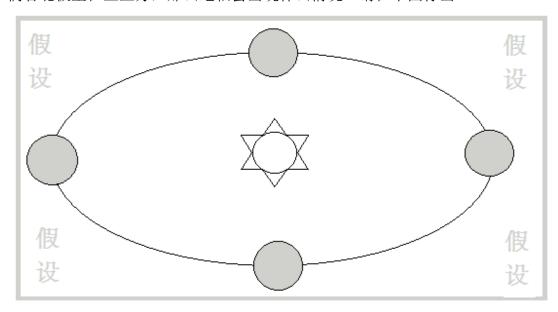
地球公转

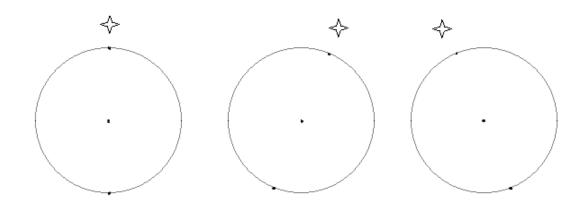
由于此前主要介绍了八大行星绕太阳的运动,这节课我们来研究八大行星之一——地球绕太阳的运动


- 1.公转的含义、周期
- 2.公转的影响

把握地球公转最关键的切入点:


★★地轴自始至终指向"北极星"附近

理解: 北极星距地球无穷远


假设下图的 上方偏右 为北极星,请你在下图中标出地轴

倘若北极星在正上方,那么地轴会出现什么情况?请在下图标出

小插曲:标出赤道

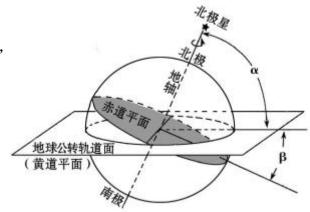


地轴与赤道所在平面的关系: 地轴 _____ 于赤道平面

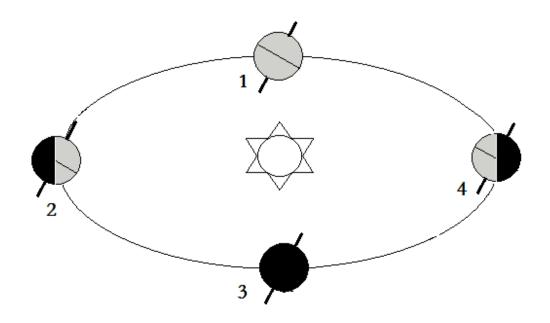
宇宙实际情况是:

北极星并不是在正上方, 而是在斜上方

请你在下图中画出赤道的位置:

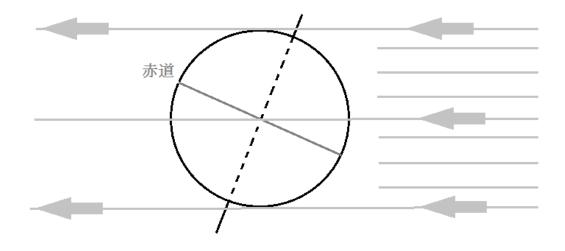


赤道平面与黄道平面一直存在一个夹角,


称为: 黄赤交角

★黄赤交角大小:

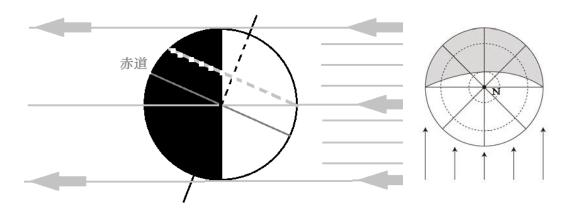
23°26′


再来观察下图:

在上图中标出四个方位太阳直射点的位置。

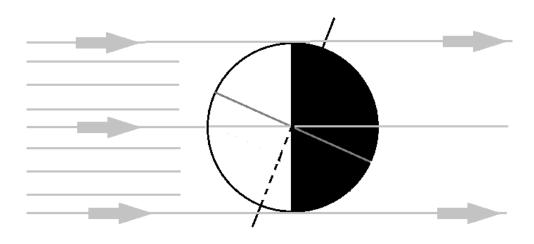
将2单独拿出,请你

- 1.标出太阳直射点的位置
- 2.画出不能被太阳照亮的部分



在上图中标出黄赤交角

实际上,地球再过一年将回归到原来的位置,因此地球的公转又叫回归运动,正是如此,太阳直射点也会在南北来回波动,


直射的北界叫做北回归线, 直射的南界叫做南回归线。

请你在下图中标出北回归线:

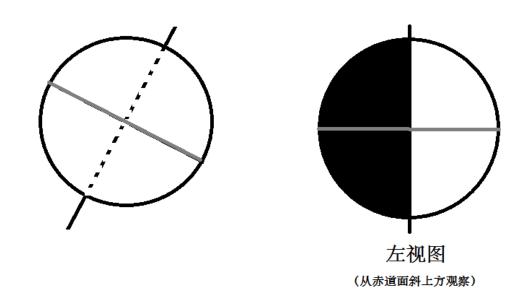
北回归线的纬度 ____ 黄赤交角的度数 在上图中标出昼弧与夜弧,发现北半球 昼弧长____夜弧长,所以昼____夜 ★太阳直射点在北半球,越往 ,昼越长。

将图中的4单独拿出,标出南回归线:

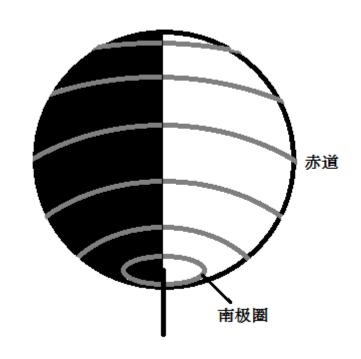
在上图中标出昼弧与夜弧,发现北半球 昼弧长___夜弧长,所以昼___夜

在上图中找一下,是否存在一些点,他们在地球自转过程中,不会出现黑夜,一直是白天。

地理学将存在极昼极夜范围的边界称为极圈,在图中标出南极圈的位置与北极圈的位置。

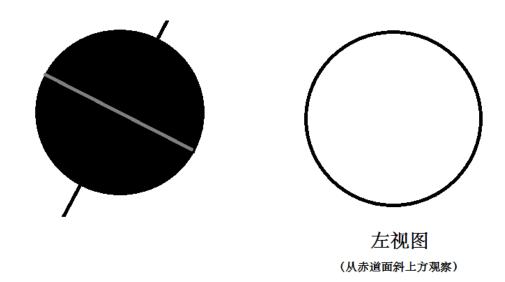

观察右图:

 $1^{\circ} = 60'$

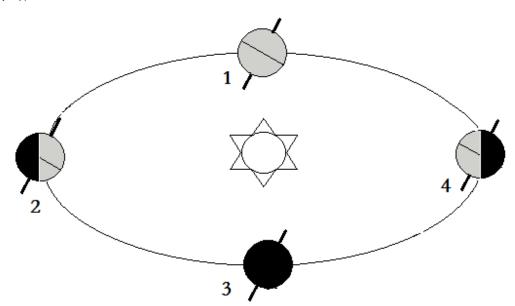

请你求出南北极圈的度数:

将图中的1拿出,

通过观察地球仪,看是否为下图的情况

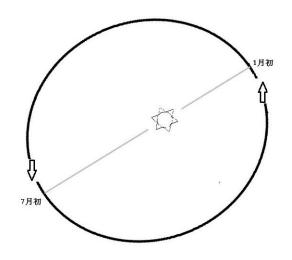


了解:实际上,若从水平面上看图中的1,出现的是下面的情况:

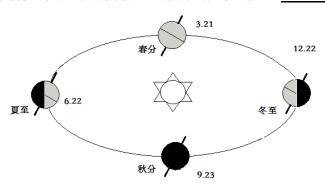


将图中的3拿出,

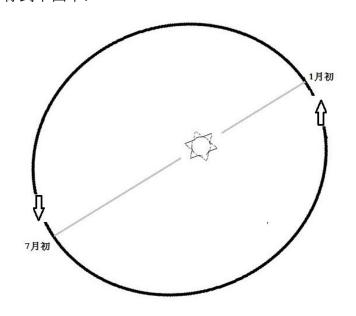
通过观察地球仪, 画出其左视图

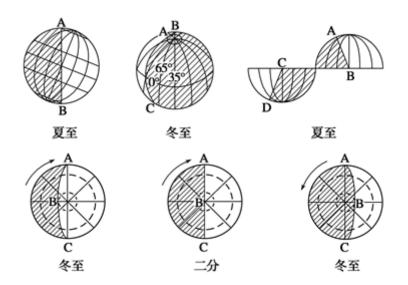

小结:

★自我总结:			
2 位置,太阳直射	,此时北半球_	最长,	最短,
		出现极昼	
		出现极夜	
由2到4,太阳直	射点向移动,	_ 半球昼渐长	
4 位置,太阳直射	,此时北半球_	最长,	最短,
		出现极昼	
		出现极夜	

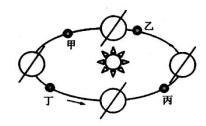

在上图中标出春分、夏至、秋分、冬日所在的位置。

我们知道,行星的公转轨道具有近圆性,可实际上是个椭圆,如下图:



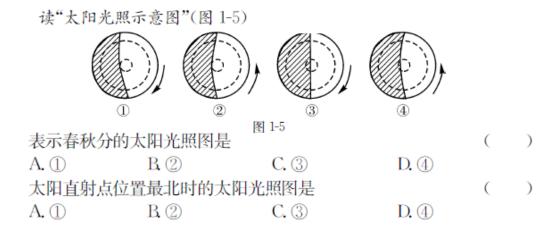

在图中标出近日点与远日点

开普勒行星运动定律:单位时间内扫过的面积相等,那么, 公转速度快。

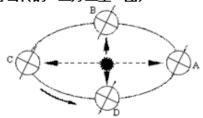

将二分二至日标到下图中:

练习:

下图为地球公转示意图。读图,回答(1)~(2)题。


图中正确表示 2016 年除夕(2016 年 2 月 7 日)时地球在公转轨道上的位置的是()

A. 甲


B. 乙

C. 丙

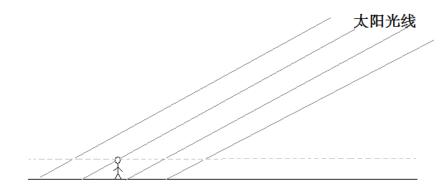
D. Ţ

读地球公转的"二分二至"图,

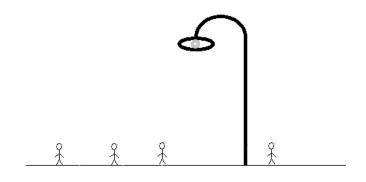
图中字母 C 所代表的节气名称是

()

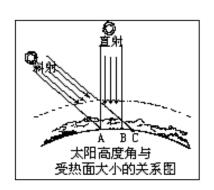
- A. 春分
- B. 秋分
- C. 冬至
- D. 夏至↩

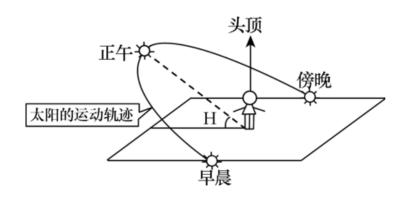

有关国庆节前后太阳直射点和地球公转速度的叙述正确的是:()

- A. 地球公转到 AB 之间,速度减慢↓
- B. 地球公转 BC 之间,太阳直射点在北半球↓
- C. 地球公转到 CD 之间,速度逐渐加快
- D. 地球公转到 DA 之间,太阳直射点在南半球~

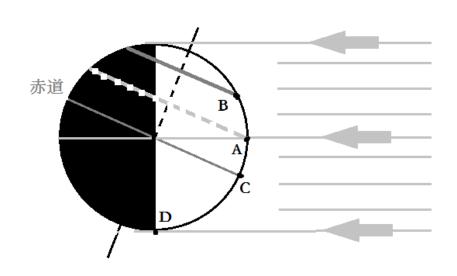

★太阳高度角

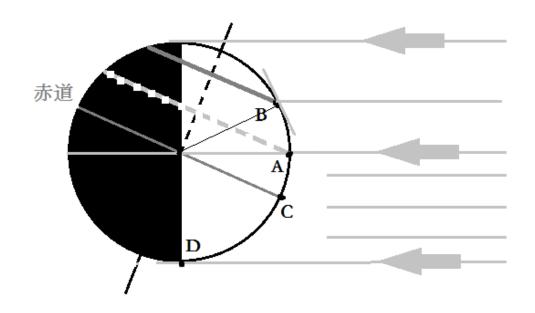
定义: 太阳光线与水平面的夹角


标出下图中的太阳高度角:


猜想:太阳高度角最大为 度。

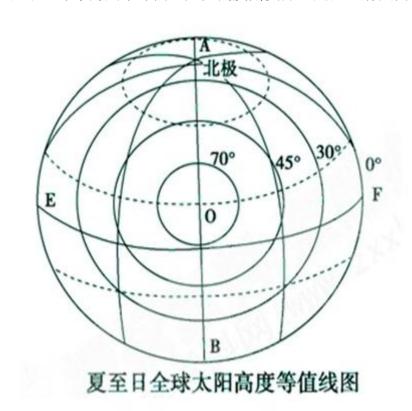
当直射时,太阳高度角为 ___ 度。


问: 一天中太阳高度角最大的是什么时刻呢?

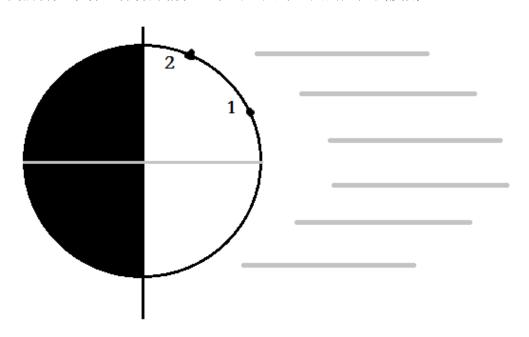

那么早晨和傍晚时的太阳高度角为多少度呢?

水平面看起来是平的,由于地球是球体,所有的引力都指向地心,水平线应该与受重力的方向 _____。

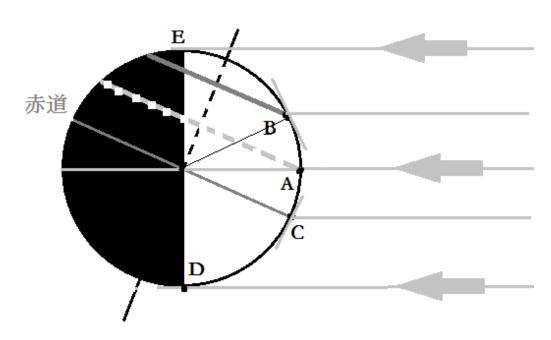
画出下图中 A B C D 的水平线:



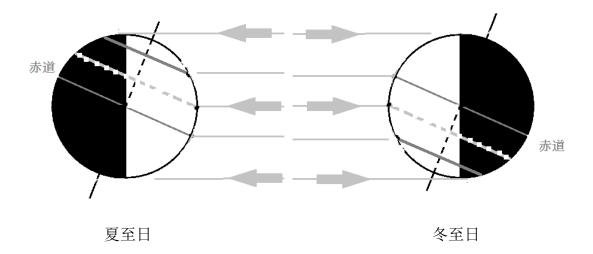
标出 B 点的太阳高度角,并作出 C 点的太阳高度角:


了解:

事实上,由于地球本身是个球面,太阳高度角实际上是由直射点向四周递减。

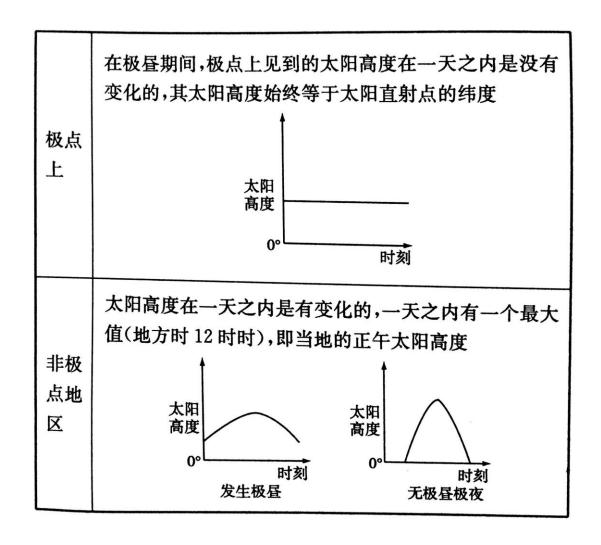

太阳高度角的计算:

我们首先来看一种特殊情况,求出1点与2点的太阳高度角。

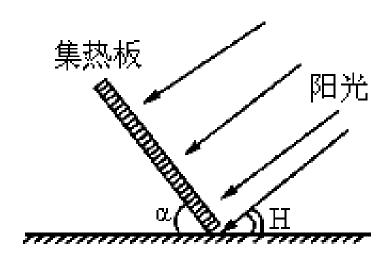


规律:

纬度与直射点差多少度,太阳高度就与90度差多少度。


与北回归线维度相差 90 度的点是:	
所以太阳高度角为	0

总结:

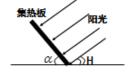

太阳高度角从直射纬度向南北递减,

★与直射点纬度相差多少度,太阳高度就与纬度相差多少度。

太阳高度角的应用:

太阳能热水器与地面的夹角,是冬天大、还是夏天大呢?

你的回答是:


我国某地一年中最小的正午太阳高度角是 35.5°,春分日时太阳能热水器集热板的最佳倾角 α

应为: ↩

A. 35.5°

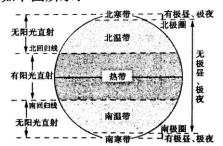
B. 31° ↔

C. 59° D. 54.5° ↔

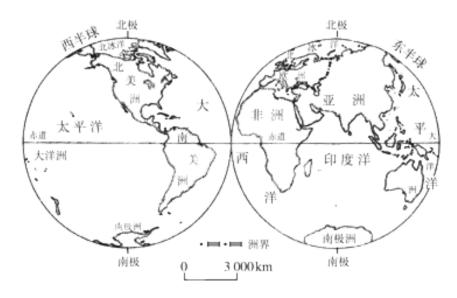
五带的划分:

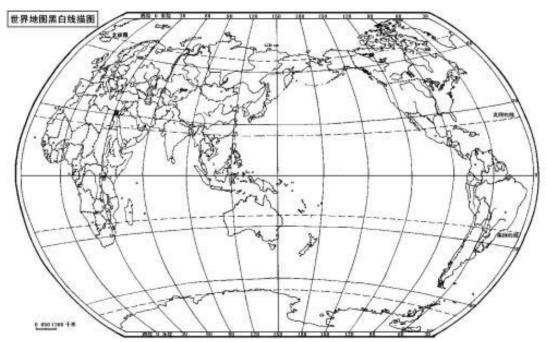
地理学将有直射的范围称为热带,

那么热带的范围是:


地理学将有极昼极夜的范围称为寒带,

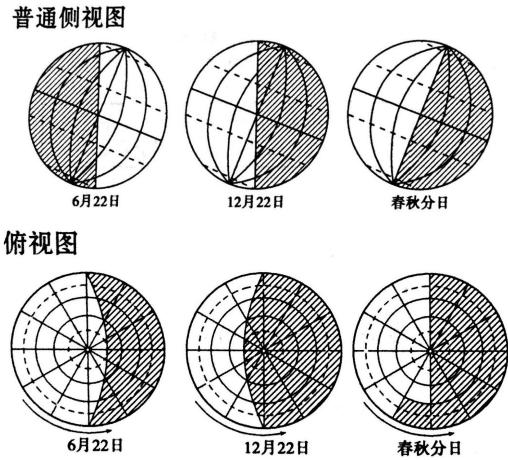
那么北寒带的范围是:


那么南寒带的范围是:


五带划分

具体划分如下图所示:

画出五带的范围



了解: 四季的划分

	春 季	夏季	秋 季	冬季
欧美四季	3月21日—	6月22日—	9月23日—	12月22日—
	6月22日	9月23日	12月22日	3月21日
气候四季	3、4、5 三个月	6、7、8 三个月	9、10、11 三个月	12、1、2 三个月
我国传统四季	2月4日、5日—	5月5日、6日—	8月7日、8日—	11月7日、8日—
	5月5日、6日	8月7日、8日	11月7日、8日	2月4日、5日

太阳直射点的回归运动规律

时间	直射点位置	直射点移动方向	示意图
6月22日前后	北回归线	到达最北界,开始向南移	6月22日前后 6月22日前后 9月23日前后 3月21日前后
1	北回归线与赤道之间	向南移动	
9月23日前后	赤道	向南移动	
1	赤道与南回归线之间	向南移动	
12月22日前后	南回归线	到达最南界,开始向北移	
1	南回归线与赤道之间	向北移动	
3月21日前后	赤道	向北移动	
1	赤道与北回归线之间	向北移动	
6月22日前后	北回归线	到达最北界,开始向南移	

