更新时间:2025-05-14
高二这一年,是成绩分化的分水岭,成绩会形成两极分化:行则扶摇直上,不行则每况愈下。
数学选择题记住这八句话
错误类型一:读题失误
口诀一:勤分已知待求,明辨信息去留
理解题意是当前高考对同学们最为基本的要求。那么,怎样的状态算是对题意完全理解了呢?对于数学而言,只要你在开始解题之前就通过读题准确区分出了已知条件和待求的结论,那么你距离完全理解题意就非常近了:接下来,你只需要弄清楚已知条件和待求结果之间的关系,并成功运用自己学到的知识将这种关系用公式表达出来,进行计算就可以获得正确答案了。
但是,近几年来高考数学中实际应用的问题和具有物理背景、传统文化背景的问题越来越多,因此每次考试中都有至少一到两题的题面非常的长,例如数学全国卷的“宝塔灯笼与等比数列”那一题。
这类题目与传统的选择题相比实际只多了一个难度层次:要求考生自行从文本中提取已知条件和待求的结论。事实上,这也是目前高考数理类科目对咱们同学的新要求:理论与实践结合。
因此,对于这类信息量比较大的题目,我们往往可以将其简化为一个更加抽象而简单的数学问题,求解之后即可获得答案。只要明确了已知和待求的问题,做选择题基本不会跑偏。
口诀二:理清逻辑线,答案自然现
在明确了一道选择题里面的已知条件、待求结果之后,接下来的工作就是理清它们的逻辑关系。
一般而言,已知和待求之间的逻辑线是由我们平时课上学到的知识点组成的,每一个知识点之间在逻辑上本身就存在相互导出的关系,因此逻辑线的整理实质上就是通过所学的知识建立起已知和待求之间的逻辑关系,为后面使用公式、确定求解预备条件打下基础。
此外,整理逻辑线的过程中,也能通过知识点的回顾,在不求解题目的情况下预判题目是否可解,或者说题目若能求解,究竟需要哪些条件。这样,一个比较复杂的数学问题就有较大的可能转换成一个比较简单的数学问题,或者从一个为止的特殊问题转化为一个已知的一般问题。做到这一步以后,基本上就能制定有效的求解方案,给出计算公式并得到答案了。
错误类型二:解题方案错误
口诀三:一步一个脚印,一题一组公式
相信各位同学的数学老师应该在课上多次强调过一个问题:做题不能全靠感觉。事实上,解题过程中最容易被感觉迷惑的阶段就是解题方案的制定阶段。
需要提醒大家的是,数学考试和历史上的数学研究是有很大差异的。如果大家看过一些数学史相关的书籍的话应该会发现,近2来的高等数学的证明过程多半都是依靠数学家的大胆假设而得出的“歪打正着”的结论,但是高考数学则不是这样的。
题目的一切信息,都会指向求解过程中的明确的知识点和公式。你需要做的,就是从题目的情报中找到这些知识点和公式,并按照逻辑与因果关系将其传承一条线,这就是我们说的解题方案。
口诀四:考题答案千千万,基本问题占大半
如果大家已经掌握了解题方案的制定手法,那么大家应该很快就会发现这样一个事实:数学考题往往可以按照其中的核心公式的差异被分为不同的类别,而不同类别的题目中,所有的待求问题最终都会指向某几个特定的公式内的字母。于是,某个数学考题的解决方案,最终都可以等效为求解某个公式中的待定参数,而这个求解的过程,就是我们数学课上常说的“基本问题”
常见的数学基本问题大致如下:
求解某个函数的定义域、值域
分析某个函数的变化趋势
讨论某个参数在当前条件限制下的取值范围
使用代数关系式表示一种特定的关系
求解某个整理后的代数式的值
错误类型三:计算错误
口诀五:考题算式,占纸千面;基本公式,只占一面
当你到了高三总复习的时候,整理数学的知识点应该是理科科目中较为轻松的一类工作,因为数学课上的公式相对于物理、化学、生物而言并不算多。曾经有学霸尝试过将所有高中必考的数学公式整理在一面A4纸上,这也说明数学的刚性知识体量相对而言是较少的。
但是,为什么大家在使用这些公式的时候仍然会有这么高的错误率呢?原因在于,代数思想不成熟,以及训练过程中对“代换”这一方法的练习还不够。
以选择题中的快速多项式求导运算为例。目前求导的选择题中必然包含符合求导,而这部分求导计算必须将某个代数式视作一个整体,再应用导数公式进行拆分化简。如果在计算过程中没能准确识别这个“整体”,或者说在计算过程中将“整体”弄错了,那么最后的结果必然会出错。
需要提醒大家的是,高中数学与初中数学在解题方面最大的差异在于代数计算的比例。目前绝大部分地区的高考都禁止使用计算器,因此代数运算能力的培养非常重要
口诀六:字母前后,查缺补漏;正负易反,系数易丢
选择题里面能够遭遇大规模代数运算的题型一般是数列、函数性质综合分析、圆锥曲线性质分析。这部分题目的公式一般采用分式给出,在化简计算时常常是多组多项式以分式的形式结合起来。这一过程中的错误往往会发生在合并同类项和誊抄上一步的结果中,如果出现笔误,改变了单项式的字母构成(例如多了个字母或者缺一个字母)和正负号,则后续的合并同类项必然受到影响。尽管有过在公式计算出错的情况下得到正确答案的先例,但是这只是极个别的情形,运气因素极大。
因此,在代数运算过程中,务必关心每一个单项式在各个计算步骤前后是否一致,字母构成不能变,正负号不能反过来,前面的系数也不能丢!
错误类型四:检查过程中出错
口诀七:答案不可瞎选,草稿不能瞎打
对于考前准备得比较充分的同学而言,试题完成后的检查工作更多的是对自己的解题方案以及计算过程的确认。但是选择题与大题不同,我们的过程一般是呈现在草稿纸上的,如果平时练习的过程中没有养成良好的打草稿的习惯的话,检查的过程将非常困难。
草稿虽然不要求字迹工整,但是必须按照题目进行分区,尽量避免将很多道题的草稿打到一块,否则在后期检查的时候草稿基本上就失去了利用的价值。
但是,是不是所有的题目都必须规规矩矩地打草稿呢?显然时间上不允许。在时间比较紧张的情况下,在题目附近标注比较重要的求解思路、公式也是使得草稿更加有有利于后期检查的方式,而且这么做效率会更高。
口诀八:一路通不算通,路路通才是通
在时间尚有余地的情况下,可以多准备一种求解的思路,在检查的时候进行快速验算,如果两种结果能够相互印证,则最终的结果多半就是正确答案。
不过这么做必须承担一定的风险:如果准备了很多种验算方法,但是考场上却得到了多个不同的结果,那么哪个才是对的呢?
我们给出的判断标准是:相信你所认为的方法更简便、更熟悉、更有把握算对的那个结果。
如果你在正式考试之前已经做过很多类似的练习,也就是尝试着用很多种方法去解同一个选择题,那么你在实际考试时利用多种方法验算题目正确的可能性将随之增加。反之,如果盲目在考试中引入一种看似可以算对的做法去检查最后的结果,最后你很可能会将正确答案改成错误答案!
1.特值检验法:对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
2.极端性原则:将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。
3.剔除法:利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。
4.数形结合法:由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。
5.递推归纳法:通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。
6.顺推破解法:利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。
7.逆推验证法(代答案入题干验证法):将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。
8.正难则反法:从题的正面解决比较难时,可从选择支出发逐步逆推找出符合条件的结论,或从反面出发得出结论。
9.特征分析法:对题设和选择支的特点进行分析,发现规律,归纳得出正确判断的方法。
10.估值选择法:有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。
数学选择题在当今高考试卷中,不但题目多,而且占分比例高,具有概括性强,知识覆盖面广,小巧灵活,且有一定的综合性和深度等特点,考生能否迅速、准确、全面、简捷地解好选择题,将成为高考成功的关键。
解答选择题的基本策略是准确、迅速。准确是解答选择题的先决条件,选择题不设中间分,一步失误,造成错选,全题无分,所以应仔细审题、深入分析、正确推演、谨防疏漏,确保准确;迅速是赢得时间获取高分的必要条件,对于选择题的答题时间,应该控制在不超过40分钟左右,速度越快越好,高考要求每道选择题在1~3分钟内解完,要避免“超时失分”现象的发生。
高考中的数学选择题一般是容易题或中档题,个别题属于较难题,当中的大多数题的解答可用特殊的方法快速选择。解选择题的基本思想是既要看到各类常规题的解题思想,但更应看到选择题的特殊性,数学选择题的四个选择支中有且仅有一个是正确的,因而,在解答时应该突出一个“选”字,尽量减少书写解题过程,要充分利用题干和选择支两方面提供的信息,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取,这是解选择题的基本策略。
(一)巧解高考数学选择题数学选择题的解题方法
1、直接法:就是从题设条件出发,通过正确的运算、推理或判断,直接得出结论再与选择支对照,从而作出选择的一种方法。运用此种方法解题需要扎实的数学基础。
2、特例法:就是运用满足题设条件的某些特殊数值、特殊位置、特殊关系、特殊图形、特殊数列、特殊函数等对各选择支进行检验或推理,利用问题在某一特殊情况下不真,则它在一般情况下也不真的原理,由此判明选项真伪的方法。用特例法解选择题时,特例取得愈简单、愈特殊愈好。
3、图解法:就是利用函数图像或数学结果的几何意义,将数的问题(如解方程、解不等式、求最值,求取值范围等)与某些图形结合起来,利用直观几何性质分析,再辅以简单计算,确定正确答案的方法。这种解法贯穿数形结合思想,每年高考均有很多选择题(也有填空题、解答题)都可以用数形结合思想解决,既简捷又迅速。
4、验证法:就是将选择支中给出的答案或其特殊值,代入题干逐一去验证是否满足题设条件,然后选择符合题设条件的选择支的一种方法。在运用验证法解题时,若能据题意确定代入顺序,则能较大提高解题速度。
此外,代入验证法有助于学生快速地判断所选结果是否合理,有助于提升正确率。
5、筛选法(也叫排除法、淘汰法):就是充分运用选择题中单选题的特征,即有且只有一个正确选择支这一信息,从选择支入手,根据题设条件与各选择支的关系,通过分析、推理、计算、判断,对选择支进行筛选,将其中与题设相矛盾的干扰支逐一排除,从而获得正确结论的方法。使用筛选法的前提是“答案唯一”,即四个选项中有且只有一个答案正确。
6、分析法:对有关概念进行全面、正确、深刻的理解或对有关信息提取、分析和加工后而作出判断和选择的方法。选择题中最常用的是特征分析法——即根据题目所提供的信息,挖掘诸如数值特征、数学对象结构特征、位置特征等内容,进行快速推理,迅速作出判断的方法。
此外,还有逻辑分析法——通过对四个选择支之间的逻辑关系的分析,达到否定谬误支,选出正确支的方法
7、估算法:就是把复杂问题转化为较简单的问题,求出答案的近似值,或把有关数值扩大或缩小,从而对运算结果确定出一个范围或作出一个估计,进而作出判断的方法。
小结:
1、解选择题的方法很多,上面仅列举了几种常用的方法,这里由于限于篇幅,其它方法不再一一举例。需要指出的是对于有些题在解的过程中可以把上面的多种方法结合起来进行解题,会使题目求解过程简单化。
2、对于选择题一定要小题小做,小题巧做,切忌小题大做。“不择手段,多快好省”是解选择题的基本宗旨。
(二)巧解高考数学选择题选择题的几种特色运算
这里再和大家分享一下选择题的几种特色运算,包括速算、验算、活算、巧算、活算、设而不算、估算、简化计算和常识判断等。大家可以用下面几道题目体会一下:
巧解高考数学选择题最后,我们需要重视审题,弄清题中的概念,并挖掘其中的隐含信息,对于复杂的题目也要能够深入思考与谨慎推理,不断积累做好选择题的经验,这样才能立于不败之地。
高中数学选择题解题技巧
高中数学一直是同学们在学习中的重点和难点,也是高考中非常重要的科目之一。下面有途网小编和大家说一说高中数学选择题解题技巧,供大家参考。
高中数学选择题解题技巧——递推归纳法
通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。
高中数学选择题解题技巧——逆推验证法
将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。从题的正面解决比较难时,可从选择支出发逐步逆推找出符合条件的结论,或从反面出发得出结论。
高中数学选择题解题技巧——特征分析法
对题设和选择支的特点进行分析,发现规律,归纳得出正确判断的方法。
例:256-1可能被120和130之间的两个数所整除,这两个数是:
A.123,125 B.125,127 C.127,129 D.125,127
解析:初中的平方差公式,由256-1=(228+1)(228-1)=(228+1)(214+1)(27+1)(27-1)=(228+1)(214+1)·129·127,故选C。
高中数学选择题解题技巧——估值选择法
有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。
高中数学解题模板高中数学选择题10大解题技巧。这十种方法涵盖了高中数学的选择题解题的技巧,套用一下试试看,你会发现选择题拿满分真心不是事儿。
1.特值检验法
对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。
例:△ABC的三个顶点在椭圆4x2+5y2=6上,其中A、B两点关于原点O对称,设直线AC的斜率k1,直线BC的斜率k2,则k1k2的值为
A.-5/4B.-4/5C.4/5D.2√5/5
解析:因为要求k1k2的值,由题干暗示可知道k1k2的值为定值。题中没有给定A、B、C三点的具体位置,因为是选择题,我们没有必要去求解,通过简单的画图,就可取最容易计算的值,不妨令A、B分别为椭圆的长轴上的两个顶点,C为椭圆的短轴上的一个顶点,这样直接确认交点,可将问题简单化,由此可得,故选B.
2.极端性原则
将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。
3.剔除法
利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。
4.数形结合法
由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。
5.递推归纳法:
通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。
6.顺推破解法:
利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。
例:银行计划将某资金给项目M和N投资一年,其中40%的资金给项目M,60%的资金给项目N,项目M能获得10%的年利润,项目N能获得35%的年利润,年终银行必须回笼资金,同时按一定的回扣率支付给储户。为了使银行年利润不小于给M、N总投资的10%而不大于总投资的15%,则给储户回扣率最小值为()
A.5% B.10% C.15% D.20%
解析:设共有资金为α,储户回扣率χ,由题意得解出0.1α≤0.1×0.4α+0.35×0.6α-χα≤0.15α
解出0.1≤χ≤0.15,故应选B。
7.逆推验证法(代答案入题干验证法):
将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。
例:设集合M和N都是正整数集合N*,映射f:M→把集合M中的元素n映射到集合N中的元素2n+n,则在映射f下,象37的原象是()
A.3 B.4 C.5 D.6
8.正难则反法:
从题的正面解决比较难时,可从选择支出发逐步逆推找出符合条件的结论,或从反面出发得出结论。
9.特征分析法:
对题设和选择支的特点进行分析,发现规律,归纳得出正确判断的方法。
例:256-1可能被120和130之间的两个数所整除,这两个数是:
A.123,125B.125,127C.127,129D.125,127
解析:初中的平方差公式,由256-1=(228+1)(228-1)=(228+1)(214+1)(27+1)(27-1)=(228+1)(214+1)·129·127,故选C.
10.估值选择法:
有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。
高考备战:数学选择题是高考数学三大基本题型之一,一组高考数学选择题,只要备题充分的扬长避短,运用好群体效应,就能在较大的知识范围内,实现对基础知识、基本技能和基本的数学思想方法的全面考察。能比较确切地测试考生对概念、原理、性质、法则、定理和公式的理解和掌握程度,还能在一定程度上有效考察逻辑思维能力、运算能力、空间想象能力以及灵活和综合地运用数学知识解决问题的能力。的高考数学试卷(全国卷)仍将有12个选择题,每题5分,共计60分,占总分150分的40%。而去年全国卷的难度为0.60,即平均分为90,而60分占90分的比例为三分之一。约67%。可见选择题的成功率对于全卷的成功来说多重要。从选择题的结构特征、命题方法可以寻找并总结出一些简捷巧妙的解法。
下面给出十种简捷巧妙的解法。供你参考。一、“抓住特征,逆施倒行”;二、“火眼金睛,一眼洞穿”;三、“观察思考,估算判断”;四、“多思少算,特值判断”;五、运动变化,巧用极端”;六、“数形结合,巧用直观”;七、“敢于排除,善于排除”;八、“注意平衡,巧用对称”;九、“等价转化,活用定义”;十、“巧用蕴含,果断排除”。
以上十种方法,配合应用就可以使得选择填空题解答又快又准。比如,有些方程的解,我们可以翻过来用选择支代入验证,这就是逆向代入法,它比直接求解对号入座有时候要来得快。再比如估值法,某年一道高考题是说,一个正方体的表面积是a的平方,那么,它的外接球的表面积是:题目中给出了四个选择支,我们估计圆的表面积比它的内接正方体的表面积要大一些,但也大不到哪里去,有两个答案说,外接球的表面积,分别是正方体表面积的六倍多和九倍多,显然应该排除另一个选择支,所求的表面积是正方体表面积的1.01倍,显然,也不对。而剩下的一个选择支,球的表面积是正方体表面积的1.57倍,显然,它就应该是正确的选择题。我们这里只是对球的表面积进行了估算,就可以得到正确结果,还有许多高考选择填空题都可以用近似计算和估算的方法进行解答,估算也是一种能力,考试中心在命题的时候,特别提到提倡运用估值判断的方法。不用这样的方法,费时较多,用上这样的方法,简洁明快,它可以把不同层次的考生区别开来。
一、高中数学答题方法排除法解题技巧
所谓排除法,就是经过判断推理,将四个备选答案中的三个迷惑答案一一排除,剩下一个正确答案.排除法也叫筛选法.
例1若a>b,且c为实数,则下列各式中正确的是().
A.ac>bcB.acbc2D.ac2≥bc2
解析:由于c为实数,所以c可能大于0、小于0、也可能等于0.
当c=0时,显然A、B、C均不成立,故应排除A、B、C.对于D来说,当c>0,c<0,c=0时,ac2≥bc2都成立,故应选D.
例2在Rt△ABC中,∠C=90°,AC=15,BC=8,则sinA+sinB+sinC=().
A.B.C.D.
解析:由∠C=90°可得sinC=1.又因为∠A、∠B均为锐角,所以sinA、sinB均为正数,从而sinA+sinB+sinC>1.而A、B、C三个选项中的值均小于1,于是排除A、B、C,故选D.
二、高中数学答题方法特殊值法解题技巧
当某些题目比较抽象,难以对其作出判断时,我们可以在符合题目条件的范围内,用某些特殊值代替题目中的字母,然后作出判断.我们将这种解题的方法称为特殊值法.
例3若二次方程x2+2px+2q=0有实数根,其中p,q为奇数,那么它的根一定为().
A.奇数B.偶数C.分数D.无理数
解析:此题关于x的方程的系数为字母p、q,虽然知道p、q为奇数,但仍比较抽象,我们可以根据题设条件赋予未知字母特定的值,然后再去解这个一元二次方程,它的根的情况便一目了然了.
不妨设p=3,q=1,则原方程变为x2+6x+2=0解得x=±-3,显然这是一个无理数,故应选择D.
例4若a、b、c都不为零,但a+b+c=0,则++的值().
A.正数B.零C.负数D.不能确定
解析:此题若按传统方法进行通分将非常麻烦且不易求解,若采用特殊值法,则能化繁为简.令a=1、b=1、c=-2,代入原式得++=+-=0,故选B.
三、高中数学答题方法代入检验法解题技巧
当某些问题(如方程、函数等)解起来比较麻烦时,可以换一个角度进行分析判断,即把给出的根、给出的点或给出的值代入方程或函数式中进行验证,从而使问题得以简化.这类处理问题的方法被称为代入法,又叫验证法.
例5若最简根式和是同类根式,则a、b的值为().
A.a=1b=1B.a=1b=-1
C.a=-1b=-1D.a=-1b=1
解析:由同类根式的定义可知根指数相同,被开方数也相同,这样便可列出一个二元一次方程组,再解这个二元一次方程组,用求出的解去检验给出的a、b的值,显然比较麻烦,如采用将给出的a、b的值分别代入最简根式中,再作出判断便容易多了.
当把a=1、b=1代入根式后分别得出和,显然它们为同类根式,故应选A.
例6若△ABC的三边长分别为整数,周长为11,且一边长为4,则这个三角形的最大边长为().
A.7B.6C.5D.4
解析:(1)若最大边为7,7+4=11,两边长就等于周长显然不行;(2)若最大边为6,则另一边只能为1,1、4、6无法构成三角形;(3)若最大边为5,且一边长为4.则第三边为2,因此5为最大边,无需再考虑4的情况.故选C.
四、高中数学答题方法估算法解题技巧
估算法是一种粗略的计算方法,实质上是一种快速的近似计算方法,即对题目所给条件或信息作适当的变形与整理,从而对结果确定出一个范围或作出一个估计.
例7已知地球的表面积约等于5.1亿平方千米,其中水面面积约等于陆地面积的倍,则陆地面积约等于()亿平方千米(精确到0.1).
A.1.5B.2.1C.3.6D.12.5
解析:此题如果采取列算式计算比较准确,实际上,可粗略地估算出地球的表面积是其中陆地面积的3倍多,而5.1÷3<2,故选A.
例8如图1,将边长为8cm的正方形纸片ABCD折叠,使点D落在BC边的中点E处,点A落在点F处,折痕为MN,则线段CN的长度为().
A.3cmB.4cm
C.5cmD.6cm图1
解析:在Rt△CEN中,可运用勾股定理求出线段CN的长,但如果采用估算的方法会使解题简单.由于点E是BC的中点,所以EC=4cm,在Rt△CEN中,由于EN是斜边,所以EN>4cm,又EN=DN,而DN+CN=8cm,可知CN<4cm,故选A.
五、高中数学答题方法实践操作法解题技巧
与剪、折等操作有关的图形变换题是各地中考的热点题型,只凭想象不好确定,如果按照剪、折的顺序动手操作一下,就可以很直观地得到答案,往往能达到快速求解的目的.
例9折纸是一种传统的手工艺术,它能培养手指的灵活性、协调能力,还能培养人的智力.在折纸中,蕴含着许多数学知识,我们可以通过折纸验证数学猜想.如把一张直角三角形纸片按照图2中①~④的过程折叠后展开,请选择所得到的数学结论().
图2
A.角的平分线上的点到角的两边的距离相等.
B.在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半.
C.直角三角形斜边上的中线等于斜边的一半.
D.如果三角形一条边上的中线等于这条边的一半,那么这个三角形是直角三角形.
解析:严格按照图中的方法亲自动手操作一下,答案即可很直观地呈现出来.也可仔细观察图形特点,利用对称性与排除法求解.
解:如图3②,∵△CDE由△ADE翻折而成,
∴AD=CD,
如图3③,∵△DCF由△DBF翻折而成,
∴BD=CD,
∴AD=BD=CD,点D是AB的中点,
∴CD=AB,即直角三角形斜边上的中线等于斜边的一半.故选C.
图3
例10将一张正方形纸片按下列顺序折叠,将最后折叠的纸片沿虚线剪去上方的小三角形,将纸片展开,得到的图形是().
A.B.
C.D.
解析:许多同学没有动手习惯,仅靠凭空想象,结果不仅花费时间而且还不能作出正确的判断.最简单、有效的方法是准备一张正方形纸,根据题目给出的规则、顺序进行折叠、剪拼,则容易发现展开后的形状是C.注意:本题的折叠规则是先从上往下折叠,再从左往右折叠,最后从左上侧往右下侧折叠,剪掉上方的三角形.这些环节中一旦某个环节出现差错,都会造成结果出错.